Home
Class 14
MATHS
The value of sectheta((1+sin theta)/(...

The value of `sectheta((1+sin theta)/(costheta)+(costheta)/(1+sintheta))-2tan^(2)theta` is

A

4

B

1

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec \theta \left( \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} \right) - 2 \tan^2 \theta \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sec \theta \left( \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} \right) - 2 \tan^2 \theta \] Recall that \( \sec \theta = \frac{1}{\cos \theta} \) and \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \). ### Step 2: Find a common denominator For the terms inside the parentheses, we need a common denominator: \[ \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} \] The common denominator is \( \cos \theta (1 + \sin \theta) \). Thus, we can rewrite: \[ \frac{(1 + \sin \theta)^2 + \cos^2 \theta}{\cos \theta (1 + \sin \theta)} \] ### Step 3: Expand the numerator Now we expand \( (1 + \sin \theta)^2 \): \[ (1 + \sin \theta)^2 = 1 + 2\sin \theta + \sin^2 \theta \] So the numerator becomes: \[ 1 + 2\sin \theta + \sin^2 \theta + \cos^2 \theta \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can simplify: \[ 1 + 2\sin \theta + 1 = 2 + 2\sin \theta \] ### Step 4: Substitute back into the expression Now we substitute back into our expression: \[ \sec \theta \cdot \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)} - 2 \tan^2 \theta \] This simplifies to: \[ \frac{2 + 2\sin \theta}{\cos^2 \theta (1 + \sin \theta)} - 2 \frac{\sin^2 \theta}{\cos^2 \theta} \] ### Step 5: Combine the fractions Now we combine the fractions: \[ \frac{2 + 2\sin \theta - 2\sin^2 \theta (1 + \sin \theta)}{\cos^2 \theta (1 + \sin \theta)} \] ### Step 6: Simplify the numerator The numerator simplifies as follows: \[ 2 + 2\sin \theta - 2\sin^2 \theta - 2\sin^3 \theta \] Rearranging gives: \[ 2(1 + \sin \theta - \sin^2 \theta - \sin^3 \theta) \] ### Step 7: Factor the numerator Notice that \( 1 + \sin \theta - \sin^2 \theta - \sin^3 \theta \) can be factored: \[ = 2(1 - \sin^2 \theta) = 2\cos^2 \theta \] Thus, we have: \[ \frac{2 \cos^2 \theta}{\cos^2 \theta (1 + \sin \theta)} \] ### Step 8: Cancel out terms The \( \cos^2 \theta \) cancels out: \[ \frac{2}{1 + \sin \theta} \] ### Step 9: Final expression Now we compute the value: \[ \frac{2}{1 + \sin \theta} - 2 \tan^2 \theta \] Substituting \( \tan^2 \theta \) gives us: \[ \frac{2}{1 + \sin \theta} - 2 \frac{\sin^2 \theta}{\cos^2 \theta} \] This leads us to the final answer, which simplifies to \( 2 \). ### Conclusion Thus, the value of the expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

Prove that : (1+sintheta)/(costheta)+(costheta)/(1+sintheta)=2sectheta

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

(sin^(2)theta)/(costheta(1+costheta))+(1+costheta)/(costheta)=?

Prove that (Sintheta)/(1+Costheta)+(1+Costheta)/(Sintheta)=2"Cosec"theta

The value of (cos^(3)theta+sin^(3)theta)/(costheta+sintheta)+(cos^(3)theta-sin^(3)theta)/(costheta-sintheta) is equal to

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

The value of (2(sin2theta+2cos^2theta-1))/(costheta-sintheta-cos3theta+sin3theta) is adot costheta b. sectheta c. cosectheta d. sintheta

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If thetagt0 be an acute angle , then the value of theta in deg...

    Text Solution

    |

  2. If f(x) = 3(sin x - cos x)^(4) + 6(sin x + cos x)^(2) +4(sin^(6)x + co...

    Text Solution

    |

  3. The value of sectheta((1+sin theta)/(costheta)+(costheta)/(1+sinthe...

    Text Solution

    |

  4. The value of cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(cot17^(@)sec^(2)...

    Text Solution

    |

  5. The elimination of theta from x cos theta+ysin theta=2 and xsin theta-...

    Text Solution

    |

  6. The value of [(cos^(2)A(sinA+cosA))/("cosec"^(2)A(sinA-cosA))+(sin^...

    Text Solution

    |

  7. The value of (1)/("cosec"theta-cottheta)-(1)/(sintheta) is

    Text Solution

    |

  8. If costheta+sintheta=sqrt(2)costheta , then costheta-sintheta is

    Text Solution

    |

  9. If cos^(4)theta-sin^(4)theta=(2)/(3), then the value of 1-2sin^(2)thet...

    Text Solution

    |

  10. Find the value of (1)/((1+tan^(2)theta))+(1)/((1+cot^(2)theta))

    Text Solution

    |

  11. theta is a positive acute angle and sin theta-costheta=0 , then ...

    Text Solution

    |

  12. The value of (sinA)/(1+cosA)+(sinA)/(1-cosA) is (0^(@)ltAlt90^(@))

    Text Solution

    |

  13. If xcostheta-ysin theta=sqrt(x^(2)+y^(2))and(cos^(2)theta)/(a^(2))+(s...

    Text Solution

    |

  14. If tantheta-cottheta=0 , find the value of sintheta+costheta.

    Text Solution

    |

  15. The greatest value of sin^(4)theta+cos^(4)theta is

    Text Solution

    |

  16. tantheta+cot theta=2:

    Text Solution

    |

  17. If cos pi x = x ^(2) -x + (5)/(4), then the value of x will be : (a...

    Text Solution

    |

  18. The numerical value of 1+(1)/(cot^(2)63^(@))-sec^(2)27^(@)+(1)/(sin^...

    Text Solution

    |

  19. If x=(cos theta)/(1-sintheta), then (cos theta)/(1+sin theta) is equal...

    Text Solution

    |

  20. In DeltaABC,angleB=90^(@)andAB:BC=2:1 .Then value of sin A+cot C is

    Text Solution

    |