Home
Class 14
MATHS
The value of [(cos^(2)A(sinA+cosA))/(...

The value of `[(cos^(2)A(sinA+cosA))/("cosec"^(2)A(sinA-cosA))+(sin^(2)A(sinA-cosA))/(sec^(2)A(sinA+cosA))](sec^(2)A-"cosec"^(2)A)`

A

1

B

3

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we will simplify it systematically. ### Given Expression: \[ \frac{\cos^2 A (\sin A + \cos A)}{\csc^2 A (\sin A - \cos A)} + \frac{\sin^2 A (\sin A - \cos A)}{\sec^2 A (\sin A + \cos A)} \left( \sec^2 A - \csc^2 A \right) \] ### Step 1: Rewrite the Trigonometric Functions Recall the definitions: - \(\csc A = \frac{1}{\sin A}\) and \(\sec A = \frac{1}{\cos A}\) - Therefore, \(\csc^2 A = \frac{1}{\sin^2 A}\) and \(\sec^2 A = \frac{1}{\cos^2 A}\) Substituting these into the expression gives: \[ \frac{\cos^2 A (\sin A + \cos A)}{\frac{1}{\sin^2 A} (\sin A - \cos A)} + \frac{\sin^2 A (\sin A - \cos A)}{\frac{1}{\cos^2 A} (\sin A + \cos A)} \left( \frac{1}{\cos^2 A} - \frac{1}{\sin^2 A} \right) \] ### Step 2: Simplify Each Fraction The first term simplifies to: \[ \cos^2 A \cdot \sin^2 A \cdot \frac{\sin A + \cos A}{\sin A - \cos A} \] The second term simplifies to: \[ \sin^2 A \cdot \cos^2 A \cdot \frac{\sin A - \cos A}{\sin A + \cos A} \left( \frac{1}{\cos^2 A} - \frac{1}{\sin^2 A} \right) \] ### Step 3: Combine the Terms Now we can combine these terms: \[ \cos^2 A \cdot \sin^2 A \cdot \frac{\sin A + \cos A}{\sin A - \cos A} + \sin^2 A \cdot \cos^2 A \cdot \frac{\sin A - \cos A}{\sin A + \cos A} \left( \frac{\sin^2 A - \cos^2 A}{\sin^2 A \cos^2 A} \right) \] ### Step 4: Factor Out Common Terms Notice that both terms have \(\sin^2 A \cos^2 A\): \[ \sin^2 A \cos^2 A \left( \frac{\sin A + \cos A}{\sin A - \cos A} + \frac{\sin A - \cos A}{\sin A + \cos A} \left( \frac{\sin^2 A - \cos^2 A}{\sin^2 A \cos^2 A} \right) \right) \] ### Step 5: Evaluate the Expression To evaluate the expression, we can substitute a specific angle. Let's take \(A = 30^\circ\): - \(\sin 30^\circ = \frac{1}{2}\) - \(\cos 30^\circ = \frac{\sqrt{3}}{2}\) Calculating the values: 1. \(\sin^2 A = \left(\frac{1}{2}\right)^2 = \frac{1}{4}\) 2. \(\cos^2 A = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}\) 3. \(\sin A + \cos A = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2}\) 4. \(\sin A - \cos A = \frac{1}{2} - \frac{\sqrt{3}}{2} = \frac{1 - \sqrt{3}}{2}\) Substituting these values into the expression will yield a numeric result. ### Final Calculation After substituting and simplifying, we find that the numeric result is: \[ \text{Final Result} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

The value of 2sinA cos^(3)A -2sin^(3)A cosA is

Prove that : (sinA+cosA)^(2)+(sinA-cosA)^(2)=2

(1+cotA+tanA)(sinA-cosA)=(secA)/(cosec^2A)-(cosecA)/(sec^2A)

(sinA)/(1+cosA)+(1+cosA)/sinA=2cosecA

If cotA=(4)/(5) , then ((sinA+cosA))/((sinA-cosA))=?

The value of (sin A-cosA)^(2)+ (sinA+cosA)^(2) is _________

(1+sinA-cosA)/(1+sinA+cosA)=

The simplified value of 1- (sin^(2)A)/(1+ cosA) + (1+ cosA)/(sinA) - (sinA)/(1- cosA) is:

((sinA-2sin^(3)A))/((2cos^(3)A-cosA)) = ?

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. The value of cot17^(@)(cot73^(@)cos^(2)22^(@)+(1)/(cot17^(@)sec^(2)...

    Text Solution

    |

  2. The elimination of theta from x cos theta+ysin theta=2 and xsin theta-...

    Text Solution

    |

  3. The value of [(cos^(2)A(sinA+cosA))/("cosec"^(2)A(sinA-cosA))+(sin^...

    Text Solution

    |

  4. The value of (1)/("cosec"theta-cottheta)-(1)/(sintheta) is

    Text Solution

    |

  5. If costheta+sintheta=sqrt(2)costheta , then costheta-sintheta is

    Text Solution

    |

  6. If cos^(4)theta-sin^(4)theta=(2)/(3), then the value of 1-2sin^(2)thet...

    Text Solution

    |

  7. Find the value of (1)/((1+tan^(2)theta))+(1)/((1+cot^(2)theta))

    Text Solution

    |

  8. theta is a positive acute angle and sin theta-costheta=0 , then ...

    Text Solution

    |

  9. The value of (sinA)/(1+cosA)+(sinA)/(1-cosA) is (0^(@)ltAlt90^(@))

    Text Solution

    |

  10. If xcostheta-ysin theta=sqrt(x^(2)+y^(2))and(cos^(2)theta)/(a^(2))+(s...

    Text Solution

    |

  11. If tantheta-cottheta=0 , find the value of sintheta+costheta.

    Text Solution

    |

  12. The greatest value of sin^(4)theta+cos^(4)theta is

    Text Solution

    |

  13. tantheta+cot theta=2:

    Text Solution

    |

  14. If cos pi x = x ^(2) -x + (5)/(4), then the value of x will be : (a...

    Text Solution

    |

  15. The numerical value of 1+(1)/(cot^(2)63^(@))-sec^(2)27^(@)+(1)/(sin^...

    Text Solution

    |

  16. If x=(cos theta)/(1-sintheta), then (cos theta)/(1+sin theta) is equal...

    Text Solution

    |

  17. In DeltaABC,angleB=90^(@)andAB:BC=2:1 .Then value of sin A+cot C is

    Text Solution

    |

  18. The value of (sin43^(@))/(cos47^(@))+(cos19^(@))/(sin71^(@))-8cos^(2...

    Text Solution

    |

  19. The value of (sin^(2)7(1^(2))/(2)+sin^(2)82(1^(@))/(2)+tan^(2)2^(@)....

    Text Solution

    |

  20. Find the value of 1-2sin^(2)theta+sin^(4)theta.

    Text Solution

    |