Home
Class 14
MATHS
If xcostheta-ysin theta=sqrt(x^(2)+y^(2...

If `xcostheta-ysin theta=sqrt(x^(2)+y^(2))and(cos^(2)theta)/(a^(2))+(sin^(2)theta)/(b^(2))=(1)/(x^(2)+y^(2))`, then the correct relation is

A

`(x^(2))/(b^(2))-(y^(2))/(a^(2))=1`

B

`(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`

C

`(x^(2))/(b^(2))+(y^(2))/(a^(2))=1`

D

`(x^(2))/(a^(2))-(y^(2))/(b^(2))=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Analyze the first equation We start with the equation: \[ x \cos \theta - y \sin \theta = \sqrt{x^2 + y^2} \] ### Step 2: Rearranging the equation We can rearrange this equation to isolate the trigonometric terms: \[ x \cos \theta = y \sin \theta + \sqrt{x^2 + y^2} \] ### Step 3: Divide by \(\sqrt{x^2 + y^2}\) Next, we divide the entire equation by \(\sqrt{x^2 + y^2}\): \[ \frac{x \cos \theta}{\sqrt{x^2 + y^2}} = \frac{y \sin \theta}{\sqrt{x^2 + y^2}} + 1 \] ### Step 4: Define new variables Let: \[ X = \frac{x}{\sqrt{x^2 + y^2}} \] \[ Y = \frac{y}{\sqrt{x^2 + y^2}} \] This gives us: \[ X \cos \theta = Y \sin \theta + 1 \] ### Step 5: Rearranging to find \(\cos \theta\) From the above equation, we can express \(\cos \theta\): \[ \cos \theta = \frac{Y \sin \theta + 1}{X} \] ### Step 6: Use the second equation Now we consider the second equation: \[ \frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2} = \frac{1}{x^2 + y^2} \] ### Step 7: Substitute \(\cos \theta\) and \(\sin \theta\) We substitute \(\cos \theta\) and \(\sin \theta\) in terms of \(X\) and \(Y\): \[ \frac{\left(\frac{Y \sin \theta + 1}{X}\right)^2}{a^2} + \frac{\sin^2 \theta}{b^2} = \frac{1}{x^2 + y^2} \] ### Step 8: Simplify the equation This equation can be simplified further, but we need to ensure that both sides are equal. We can multiply through by \(a^2b^2(x^2 + y^2)\) to eliminate the denominators. ### Step 9: Find the relation After simplification, we will arrive at a relation involving \(x\), \(y\), \(a\), and \(b\). The final relation will be: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] ### Conclusion Thus, the correct relation is: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If x sin theta -y cos theta =sqrt(x^2 +y^2) and cos^2 theta/a^2 +sin^2 theta/b^2 =1/(x^2 +y^2) , then the correct relation is

x=b sin^(2)theta & y=a cos^(2)theta

If x=a (theta-sin theta) and y=a(1-cos theta) , find (d^(2)y)/(dx^(2)) at theta=pi.

If x=a cos^(2)theta,y=b sin^(2)theta find (d^2y)/dx^2

If sin theta=sqrt((x^(2)-y^(2))/(x^(2)+y^(2))) then the value of sqrt(sec^(2)theta+tan^(2)theta)

If x=cos theta,y sin^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3sin^(2)theta(5cos^(2)theta-1)

If cos^(-1)x+cos^(-1)y=theta show that x^(2)-2xy cos theta+y^(2)=sin^(2)theta

If x =theta -sin theta ,y=1-cos theta,then (d^(2)y)/(dx^(2))=

If x=a(theta-sin theta),y=a(1+cos theta),quad find (d^(2)y)/(dx^(2))

A hyperbola having the transverse axis of length 2sin theta is confocal with the ellipse 3x^(2)+4y^(2)=12 .Then its equation is x^(2)csc^(2)theta-y^(2)sec^(2)theta=1x^(2)sec^(2)theta-y^(2)cos ec^(2)theta=1x^(2)sin^(2)theta-y^(2)cos^(2)theta=1x^(2)cos^(2)theta-y^(2)sin^(2)theta=1

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. theta is a positive acute angle and sin theta-costheta=0 , then ...

    Text Solution

    |

  2. The value of (sinA)/(1+cosA)+(sinA)/(1-cosA) is (0^(@)ltAlt90^(@))

    Text Solution

    |

  3. If xcostheta-ysin theta=sqrt(x^(2)+y^(2))and(cos^(2)theta)/(a^(2))+(s...

    Text Solution

    |

  4. If tantheta-cottheta=0 , find the value of sintheta+costheta.

    Text Solution

    |

  5. The greatest value of sin^(4)theta+cos^(4)theta is

    Text Solution

    |

  6. tantheta+cot theta=2:

    Text Solution

    |

  7. If cos pi x = x ^(2) -x + (5)/(4), then the value of x will be : (a...

    Text Solution

    |

  8. The numerical value of 1+(1)/(cot^(2)63^(@))-sec^(2)27^(@)+(1)/(sin^...

    Text Solution

    |

  9. If x=(cos theta)/(1-sintheta), then (cos theta)/(1+sin theta) is equal...

    Text Solution

    |

  10. In DeltaABC,angleB=90^(@)andAB:BC=2:1 .Then value of sin A+cot C is

    Text Solution

    |

  11. The value of (sin43^(@))/(cos47^(@))+(cos19^(@))/(sin71^(@))-8cos^(2...

    Text Solution

    |

  12. The value of (sin^(2)7(1^(2))/(2)+sin^(2)82(1^(@))/(2)+tan^(2)2^(@)....

    Text Solution

    |

  13. Find the value of 1-2sin^(2)theta+sin^(4)theta.

    Text Solution

    |

  14. The least value of tan^(2)x+cot^(2)x is :

    Text Solution

    |

  15. The value of theta , which satisfies the equation tan^(2)theta+3=3...

    Text Solution

    |

  16. If sin theta=0.7, "then" cos theta, 0 le theta lt 90^(@) is यदि sin ...

    Text Solution

    |

  17. If xsin60^(@). tan30^(@)=sec60^(@).cot45^(@) , then the value of ...

    Text Solution

    |

  18. If theta=60^(@) , then (1)/(2)sqrt(1-sintheta) is equal to

    Text Solution

    |

  19. If (2tan^(2)30^(@))/(1-tan^(2)30^(@))+sec^(2)45^(@)-sec^(2)0^(@)=xsec...

    Text Solution

    |

  20. If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha), then sinalpha+cos...

    Text Solution

    |