Home
Class 14
MATHS
The numerical value of 1+(1)/(cot^(2)6...

The numerical value of `1+(1)/(cot^(2)63^(@))-sec^(2)27^(@)+(1)/(sin^(2)63^(@))-"cosec"^(2)27^(@)` is

A

1

B

2

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 1 + \frac{1}{\cot^2 63^\circ} - \sec^2 27^\circ + \frac{1}{\sin^2 63^\circ} - \csc^2 27^\circ \), we will break it down step by step. ### Step 1: Rewrite the cotangent and secant functions We know that: \[ \cot^2 \theta = \frac{1}{\tan^2 \theta} \quad \text{and} \quad \sec^2 \theta = 1 + \tan^2 \theta \] Thus, \[ \frac{1}{\cot^2 63^\circ} = \tan^2 63^\circ \] and \[ \sec^2 27^\circ = 1 + \tan^2 27^\circ \] ### Step 2: Substitute into the expression Substituting these identities into the expression, we have: \[ 1 + \tan^2 63^\circ - (1 + \tan^2 27^\circ) + \frac{1}{\sin^2 63^\circ} - \csc^2 27^\circ \] This simplifies to: \[ \tan^2 63^\circ - \tan^2 27^\circ + \frac{1}{\sin^2 63^\circ} - \csc^2 27^\circ \] ### Step 3: Rewrite the sine and cosecant functions We know that: \[ \csc^2 \theta = \frac{1}{\sin^2 \theta} \] Thus, \[ \csc^2 27^\circ = \frac{1}{\sin^2 27^\circ} \] Now, substituting this into the expression gives: \[ \tan^2 63^\circ - \tan^2 27^\circ + \frac{1}{\sin^2 63^\circ} - \frac{1}{\sin^2 27^\circ} \] ### Step 4: Use the identity for tangent Using the identity \(\tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}\), we can rewrite \(\tan^2 63^\circ\) and \(\tan^2 27^\circ\): \[ \tan^2 63^\circ = \frac{\sin^2 63^\circ}{\cos^2 63^\circ} \quad \text{and} \quad \tan^2 27^\circ = \frac{\sin^2 27^\circ}{\cos^2 27^\circ} \] Substituting these into the expression gives: \[ \frac{\sin^2 63^\circ}{\cos^2 63^\circ} - \frac{\sin^2 27^\circ}{\cos^2 27^\circ} + \frac{1}{\sin^2 63^\circ} - \frac{1}{\sin^2 27^\circ} \] ### Step 5: Combine the fractions Now we can combine the fractions: \[ \frac{\sin^2 63^\circ \sin^2 27^\circ - \sin^2 27^\circ \sin^2 63^\circ}{\cos^2 63^\circ \cos^2 27^\circ} + \left(\frac{\cos^2 27^\circ - \cos^2 63^\circ}{\sin^2 63^\circ \sin^2 27^\circ}\right) \] This simplifies to: \[ 0 + 0 = 0 \] ### Final Result Thus, the numerical value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

The numerical value of cot 18^(@) (cot 72^(@) cos^(2) 22^(@) + (1)/(tan 72^(@) sec^(2) 68^(@))) is

(2sin^(2)53^(@)+1+2sin^(2)37^(@))/(3cos^(2)27^(@)-2+3cos^(2)63^(@))=?

The value of sin^(2) 63^(@) + sin^(2) 27^(@) is

Find the value of [(sin^(2)22^(@)+sin^(2)68^(@))/(cos^(2)22^(@)+cos^(2)68^(@))+sin^(2)63^(@)+cos63^(@)sin27^(@)]

The numerical value of sec^(2)(tan^(-1)2) + cosec^(2)(cot^(-1)3) =______.

The numerical value of (1)/(1+cot^(2)theta)+(3)/(1+tan^(2)theta)+2 sin^(2)theta will be

The principal value of sec^(-1)(sqrt(2)) + cosec^(-1)(2) is

(csc ^ (2) 63 ^ (@) + tan ^ (2) 24 ^ (@)) / (cot ^ (2) 66 ^ (@) + sec ^ (2) 27 ^ (@)) + (sin ^ (2) 63 ^ (@) + cos63 ^ (@) sin27 ^ (@) + sin27 ^ (@)) / (2 (csc ^ (2) 65 ^ (@) - tan ^ (2) 25 ^ ( @)))

The numerical value of (5)/(sec^(2)theta)+(2)/(1+cot^(2)theta)+3sin^(2)theta is :

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. tantheta+cot theta=2:

    Text Solution

    |

  2. If cos pi x = x ^(2) -x + (5)/(4), then the value of x will be : (a...

    Text Solution

    |

  3. The numerical value of 1+(1)/(cot^(2)63^(@))-sec^(2)27^(@)+(1)/(sin^...

    Text Solution

    |

  4. If x=(cos theta)/(1-sintheta), then (cos theta)/(1+sin theta) is equal...

    Text Solution

    |

  5. In DeltaABC,angleB=90^(@)andAB:BC=2:1 .Then value of sin A+cot C is

    Text Solution

    |

  6. The value of (sin43^(@))/(cos47^(@))+(cos19^(@))/(sin71^(@))-8cos^(2...

    Text Solution

    |

  7. The value of (sin^(2)7(1^(2))/(2)+sin^(2)82(1^(@))/(2)+tan^(2)2^(@)....

    Text Solution

    |

  8. Find the value of 1-2sin^(2)theta+sin^(4)theta.

    Text Solution

    |

  9. The least value of tan^(2)x+cot^(2)x is :

    Text Solution

    |

  10. The value of theta , which satisfies the equation tan^(2)theta+3=3...

    Text Solution

    |

  11. If sin theta=0.7, "then" cos theta, 0 le theta lt 90^(@) is यदि sin ...

    Text Solution

    |

  12. If xsin60^(@). tan30^(@)=sec60^(@).cot45^(@) , then the value of ...

    Text Solution

    |

  13. If theta=60^(@) , then (1)/(2)sqrt(1-sintheta) is equal to

    Text Solution

    |

  14. If (2tan^(2)30^(@))/(1-tan^(2)30^(@))+sec^(2)45^(@)-sec^(2)0^(@)=xsec...

    Text Solution

    |

  15. If tantheta=(sinalpha-cosalpha)/(sinalpha+cosalpha), then sinalpha+cos...

    Text Solution

    |

  16. If tan9^(@)=(p)/(q) , then the value of (sec^(2)81^(@))/(1+cot^(2)...

    Text Solution

    |

  17. If sectheta+tantheta=5 , then the value of (tantheta+1)/(tantheta-1...

    Text Solution

    |

  18. If tan ^2 theta =1-e ^(2), then sec theta + tan ^(3) theta cosec thet...

    Text Solution

    |

  19. Which one of the following is true for 0^(@)ltthetalt90^(@)?

    Text Solution

    |

  20. If x=asecthetacostheta,y=bsecthetasinthetaandz=thetatantheta, then fin...

    Text Solution

    |