Home
Class 14
MATHS
If sin21^(@)=(x)/(y) , then sec21^(@)-...

If `sin21^(@)=(x)/(y)` , then `sec21^(@)-sin69^(@)` is equal to

A

`(x^(2))/(ysqrt(y^(2)-x^(2)))`

B

`(y^(2))/(xsqrt(y^(2)-x^(2)))`

C

`(x^(2))/(ysqrt(x^(2)-y^(2)))`

D

`(y^(2))/(xsqrt(x^(2)-y^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sec 21^\circ - \sin 69^\circ \) given that \( \sin 21^\circ = \frac{x}{y} \). ### Step-by-Step Solution: 1. **Understanding the Relationship Between Angles**: We know that \( \sin 69^\circ = \cos 21^\circ \) because \( 69^\circ + 21^\circ = 90^\circ \). Thus, we can rewrite the expression: \[ \sec 21^\circ - \sin 69^\circ = \sec 21^\circ - \cos 21^\circ \] 2. **Expressing Secant and Cosine**: The secant function is defined as: \[ \sec 21^\circ = \frac{1}{\cos 21^\circ} \] Therefore, we can rewrite our expression as: \[ \sec 21^\circ - \sin 69^\circ = \frac{1}{\cos 21^\circ} - \cos 21^\circ \] 3. **Finding a Common Denominator**: To combine the terms, we need a common denominator: \[ = \frac{1 - \cos^2 21^\circ}{\cos 21^\circ} \] 4. **Using the Pythagorean Identity**: We know from the Pythagorean identity that: \[ 1 - \cos^2 \theta = \sin^2 \theta \] Thus, we can substitute: \[ = \frac{\sin^2 21^\circ}{\cos 21^\circ} \] 5. **Substituting the Value of \( \sin 21^\circ \)**: Given that \( \sin 21^\circ = \frac{x}{y} \), we have: \[ \sin^2 21^\circ = \left(\frac{x}{y}\right)^2 = \frac{x^2}{y^2} \] Therefore, substituting this into our expression gives: \[ = \frac{\frac{x^2}{y^2}}{\cos 21^\circ} \] 6. **Finding \( \cos 21^\circ \)**: From our triangle, we can find \( \cos 21^\circ \) using the sides: \[ \cos 21^\circ = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{\sqrt{y^2 - x^2}}{y} \] Thus, we can rewrite the expression: \[ = \frac{\frac{x^2}{y^2}}{\frac{\sqrt{y^2 - x^2}}{y}} = \frac{x^2}{y \sqrt{y^2 - x^2}} \] 7. **Final Result**: Therefore, we conclude that: \[ \sec 21^\circ - \sin 69^\circ = \frac{x^2}{y \sqrt{y^2 - x^2}} \] ### Final Answer: The final answer is: \[ \sec 21^\circ - \sin 69^\circ = \frac{x^2}{y \sqrt{y^2 - x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

sin^(2)21^(@) + sin^(2) 69^(@) is equal to

If sin 17^@ = x/y ,then the value of sec 17^@ - sin 73^@ is

(cos20^(@)35')/(sin69^(@)25') is

If (sin (x+y))/( sin(x-y))=(a+b)/(a-b) , then (tan x)/( tan y) is equal to

int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx is equal to

If 3tan((x+y)/(2))=5tan((x-y)/(2)) then (sin x)/(sin y) is equal to

Value of (2sin9^(@)sin 21^(@)sin 39^(@)sin 51^(@)cos21^(@)sin 81^(@))/(sin54^(@)) is equal to:-

lim_(x rarr0)sin^(-1)(sec x) is equal to

If cos x-cos y=0=sin x+sin y then sin(2020x)+sin(2020y) is equal to

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If acostheta +bsin theta=pand a sin theta-b cos theta=q, then the r...

    Text Solution

    |

  2. If (sinalpha+"cosec"alpha)^(2)+(cosalpha+secalpha)^(2)=k+tan^(2)alpha...

    Text Solution

    |

  3. If sin21^(@)=(x)/(y) , then sec21^(@)-sin69^(@) is equal to

    Text Solution

    |

  4. If costheta=(x^(2)-y^(2))/(x^(2)+y^(2)) then the value of cotthet...

    Text Solution

    |

  5. If 7sinalpha=24cosalpha,0ltalphalt(pi)/(2) then the value of 14tana...

    Text Solution

    |

  6. If 2sintheta+costheta=(7)/(3) then the value of (tan^(2)theta-sec...

    Text Solution

    |

  7. If 29tan theta=31 , then the value of (1+2sinthetacostheta)/(1-2...

    Text Solution

    |

  8. ABCD is a rectangle of which AC is a diagonal .The value of ...

    Text Solution

    |

  9. For any real values of theta,sqrt((sectheta-1)/(Sectheta+1))=?

    Text Solution

    |

  10. If the sum and difference of two angles are 135^(@)and(pi)/(12) ...

    Text Solution

    |

  11. In a Delta ABC, AD divides BC in the ratio 1:3. If angle B=60^(@) ang...

    Text Solution

    |

  12. If alpha+beta=90^(@)andalpha:beta=2:1, then the ratio of cosalpha" ...

    Text Solution

    |

  13. Value of sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-co...

    Text Solution

    |

  14. If sin5theta=cos20^(@)(0^(@)ltthetalt90^(@)) then value of theta ...

    Text Solution

    |

  15. If 0^(@)ltthetalt90^(@)and2sectheta=3"cosec"^(2)theta then theta is

    Text Solution

    |

  16. Find the value of sqrt((1-sintheta)/(1+sintheta))+sqrt((1+sintheta)/(1...

    Text Solution

    |

  17. If costheta=(3)/(5) , then the value of sintheta.sectheta.tantheta ...

    Text Solution

    |

  18. If o^(@)ltAlt90^(@) , then the value of tan^(2)A+cot^(2)A-sec^(2)A"...

    Text Solution

    |

  19. If theta is a positive acute angle and "cosec"theta=sqrt(3) , then ...

    Text Solution

    |

  20. If theta is a positive acute angle and 4cos^(2)theta-4costheta+1=0...

    Text Solution

    |