Home
Class 14
MATHS
Value of sec^(2)theta-(sin^(2)theta-2s...

Value of `sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)` is

A

1

B

2

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sec^2 \theta - \frac{\sin^2 \theta - 2\sin^4 \theta}{2\cos^4 \theta - \cos^2 \theta} \), we will follow these steps: ### Step 1: Rewrite the expression using trigonometric identities We know that \( \sec^2 \theta = \frac{1}{\cos^2 \theta} \). Thus, we can rewrite the expression as: \[ \frac{1}{\cos^2 \theta} - \frac{\sin^2 \theta - 2\sin^4 \theta}{2\cos^4 \theta - \cos^2 \theta} \] ### Step 2: Simplify the denominator The denominator \( 2\cos^4 \theta - \cos^2 \theta \) can be factored: \[ 2\cos^4 \theta - \cos^2 \theta = \cos^2 \theta (2\cos^2 \theta - 1) \] ### Step 3: Substitute back into the expression Now, substituting the factored form back into the expression gives: \[ \frac{1}{\cos^2 \theta} - \frac{\sin^2 \theta - 2\sin^4 \theta}{\cos^2 \theta (2\cos^2 \theta - 1)} \] ### Step 4: Combine the fractions To combine the fractions, we need a common denominator: \[ \frac{1 \cdot (2\cos^2 \theta - 1)}{\cos^2 \theta (2\cos^2 \theta - 1)} - \frac{\sin^2 \theta - 2\sin^4 \theta}{\cos^2 \theta (2\cos^2 \theta - 1)} \] This simplifies to: \[ \frac{2\cos^2 \theta - 1 - (\sin^2 \theta - 2\sin^4 \theta)}{\cos^2 \theta (2\cos^2 \theta - 1)} \] ### Step 5: Simplify the numerator Now, simplify the numerator: \[ 2\cos^2 \theta - 1 - \sin^2 \theta + 2\sin^4 \theta \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can replace \( \sin^2 \theta \) with \( 1 - \cos^2 \theta \): \[ 2\cos^2 \theta - 1 - (1 - \cos^2 \theta) + 2\sin^4 \theta \] This further simplifies to: \[ 3\cos^2 \theta - 2 + 2\sin^4 \theta \] ### Step 6: Substitute \( \sin^2 \theta \) in terms of \( \cos^2 \theta \) Using \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ 2\sin^4 \theta = 2(1 - \cos^2 \theta)^2 = 2(1 - 2\cos^2 \theta + \cos^4 \theta) \] Substituting this back gives: \[ 3\cos^2 \theta - 2 + 2(1 - 2\cos^2 \theta + \cos^4 \theta) \] This simplifies to: \[ 3\cos^2 \theta - 2 + 2 - 4\cos^2 \theta + 2\cos^4 \theta = -\cos^2 \theta + 2\cos^4 \theta \] ### Step 7: Final simplification Now we have: \[ \frac{-\cos^2 \theta + 2\cos^4 \theta}{\cos^2 \theta (2\cos^2 \theta - 1)} \] Factoring out \( \cos^2 \theta \) from the numerator: \[ \frac{\cos^2 \theta(2\cos^2 \theta - 1)}{\cos^2 \theta(2\cos^2 \theta - 1)} = 1 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1

"(i) "sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

The value of (2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta))/(cos^(4)theta-sin^(4)theta-2cos^(2)theta) is :

The minimum value of y=(1+sin^(2)theta+sin^(4)theta+sin^(6)theta+...)+(1+cos^(2)theta+cos^(4)theta+cos^(6)theta+ .) in theta in(0,(pi)/(2)) is

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)-(sin^(2)theta+cos^(2)theta)^(2)

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. In a Delta ABC, AD divides BC in the ratio 1:3. If angle B=60^(@) ang...

    Text Solution

    |

  2. If alpha+beta=90^(@)andalpha:beta=2:1, then the ratio of cosalpha" ...

    Text Solution

    |

  3. Value of sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-co...

    Text Solution

    |

  4. If sin5theta=cos20^(@)(0^(@)ltthetalt90^(@)) then value of theta ...

    Text Solution

    |

  5. If 0^(@)ltthetalt90^(@)and2sectheta=3"cosec"^(2)theta then theta is

    Text Solution

    |

  6. Find the value of sqrt((1-sintheta)/(1+sintheta))+sqrt((1+sintheta)/(1...

    Text Solution

    |

  7. If costheta=(3)/(5) , then the value of sintheta.sectheta.tantheta ...

    Text Solution

    |

  8. If o^(@)ltAlt90^(@) , then the value of tan^(2)A+cot^(2)A-sec^(2)A"...

    Text Solution

    |

  9. If theta is a positive acute angle and "cosec"theta=sqrt(3) , then ...

    Text Solution

    |

  10. If theta is a positive acute angle and 4cos^(2)theta-4costheta+1=0...

    Text Solution

    |

  11. If (rcostheta-sqrt(3))^(2)+(rsintheta-1)^(2)=0 then the value of (...

    Text Solution

    |

  12. The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-...

    Text Solution

    |

  13. If sin(theta+18^(@))=cos60^(@)(0ltthetalt90^(@)) , then the value o...

    Text Solution

    |

  14. Let A,B,C,D be the angles of a quadrilateral . If they are con...

    Text Solution

    |

  15. Find the value of sin75^(@).

    Text Solution

    |

  16. ABC is a right angled triangle right angled at BandangleA=60^(@)...

    Text Solution

    |

  17. If tan2theta.tan3theta=1 , where 0^(@)lt theta lt90^(@) then the v...

    Text Solution

    |

  18. If cos^(2)alpha-sin^(2)alpha=tan^(2)beta, then the value of cos^(...

    Text Solution

    |

  19. If tan(A+B)=sqrt(3)andtan(A-B)=(1)/(sqrt(3)),angleA+angleBlt90^(@)AgeB...

    Text Solution

    |

  20. The value of (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta) is eq...

    Text Solution

    |