Home
Class 14
MATHS
If 0^(@)ltthetalt90^(@)and2sectheta=3"c...

If `0^(@)ltthetalt90^(@)and2sectheta=3"cosec"^(2)theta` then `theta` is

A

`(pi)/(6)`

B

`(pi)/(4)`

C

`(pi)/(3)`

D

`(pi)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \sec \theta = 3 \csc^2 \theta \) for \( \theta \) in the interval \( 0^\circ < \theta < 90^\circ \), we will follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine The secant and cosecant functions can be expressed in terms of sine and cosine: \[ \sec \theta = \frac{1}{\cos \theta}, \quad \csc \theta = \frac{1}{\sin \theta} \] Thus, we can rewrite the equation as: \[ 2 \cdot \frac{1}{\cos \theta} = 3 \cdot \left(\frac{1}{\sin \theta}\right)^2 \] This simplifies to: \[ \frac{2}{\cos \theta} = \frac{3}{\sin^2 \theta} \] ### Step 2: Cross-multiply to eliminate the fractions Cross-multiplying gives: \[ 2 \sin^2 \theta = 3 \cos \theta \] ### Step 3: Use the Pythagorean identity We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). Therefore, we can express \( \sin^2 \theta \) in terms of \( \cos \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] Substituting this into the equation gives: \[ 2(1 - \cos^2 \theta) = 3 \cos \theta \] Expanding this results in: \[ 2 - 2 \cos^2 \theta = 3 \cos \theta \] ### Step 4: Rearrange the equation Rearranging the equation leads to: \[ 2 \cos^2 \theta + 3 \cos \theta - 2 = 0 \] ### Step 5: Solve the quadratic equation Let \( x = \cos \theta \). The equation becomes: \[ 2x^2 + 3x - 2 = 0 \] We can solve this quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2, b = 3, c = -2 \): \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} \] Calculating the discriminant: \[ x = \frac{-3 \pm \sqrt{9 + 16}}{4} = \frac{-3 \pm \sqrt{25}}{4} = \frac{-3 \pm 5}{4} \] This gives us two potential solutions: \[ x_1 = \frac{2}{4} = \frac{1}{2}, \quad x_2 = \frac{-8}{4} = -2 \] Since \( \cos \theta \) must be in the range \([-1, 1]\), we discard \( x_2 = -2 \). ### Step 6: Find \( \theta \) Thus, we have: \[ \cos \theta = \frac{1}{2} \] The angle \( \theta \) that satisfies this in the interval \( 0^\circ < \theta < 90^\circ \) is: \[ \theta = 60^\circ \] ### Final Answer \[ \theta = 60^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If 0^(@)ltthetalt90^(@)and"cosectheta=cot^(2)theta then the value of the expression "cos"^(4)theta+2"cos"^(6)theta+cos^(8)theta is equal to :

If 0^(@)ltthetalt90^(@)and2sin^(2)theta+3costheta=3 , then the value of theta is

If sectheta=A, cosec theta=B , then

tan^(2)(90^(@) - theta) - cosec^(2) theta =

Prove that : (i) sinthetacos(90^(@)-theta)+sin(90^(@)-theta)costheta=1 (ii) sectheta" cosec"(90^(@)-theta)-tanthetacot(90^(@)-theta)=1 (iii) (sintheta*sec(90^(@)-theta)cot(90^(@)-theta))/("cosec"(90^(@)-theta)*costheta*tantheta)-(tan(90^(@)-theta))/(cottheta)=0 (iv) (1+sin(90^(@)-theta))/(cos(90^(@)-0))+(cos(90^(@)-theta))/(1+sin(90^(@)-0))=2"cosec"theta

If 2cos^(2)theta-5costheta+2=0,0^(@)ltthetalt90^(@) then the value of (1)/((cosectheta+cottheta)) is :

If 4-2sin^(2)theta-5costheta=0,0^(@)ltthetalt90^(@) , then the value of (sintheta+tantheta) is :

If tan^(2)theta - 3sectheta + 3=0, 0^(@) lt theta lt 90^(@) , then the value of sintheta + cos theta is:

If 2ycos theta =x sin theta and 2x sectheta -y "cosec"theta =3 , then the relation between x and y is:

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. Value of sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-co...

    Text Solution

    |

  2. If sin5theta=cos20^(@)(0^(@)ltthetalt90^(@)) then value of theta ...

    Text Solution

    |

  3. If 0^(@)ltthetalt90^(@)and2sectheta=3"cosec"^(2)theta then theta is

    Text Solution

    |

  4. Find the value of sqrt((1-sintheta)/(1+sintheta))+sqrt((1+sintheta)/(1...

    Text Solution

    |

  5. If costheta=(3)/(5) , then the value of sintheta.sectheta.tantheta ...

    Text Solution

    |

  6. If o^(@)ltAlt90^(@) , then the value of tan^(2)A+cot^(2)A-sec^(2)A"...

    Text Solution

    |

  7. If theta is a positive acute angle and "cosec"theta=sqrt(3) , then ...

    Text Solution

    |

  8. If theta is a positive acute angle and 4cos^(2)theta-4costheta+1=0...

    Text Solution

    |

  9. If (rcostheta-sqrt(3))^(2)+(rsintheta-1)^(2)=0 then the value of (...

    Text Solution

    |

  10. The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-...

    Text Solution

    |

  11. If sin(theta+18^(@))=cos60^(@)(0ltthetalt90^(@)) , then the value o...

    Text Solution

    |

  12. Let A,B,C,D be the angles of a quadrilateral . If they are con...

    Text Solution

    |

  13. Find the value of sin75^(@).

    Text Solution

    |

  14. ABC is a right angled triangle right angled at BandangleA=60^(@)...

    Text Solution

    |

  15. If tan2theta.tan3theta=1 , where 0^(@)lt theta lt90^(@) then the v...

    Text Solution

    |

  16. If cos^(2)alpha-sin^(2)alpha=tan^(2)beta, then the value of cos^(...

    Text Solution

    |

  17. If tan(A+B)=sqrt(3)andtan(A-B)=(1)/(sqrt(3)),angleA+angleBlt90^(@)AgeB...

    Text Solution

    |

  18. The value of (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta) is eq...

    Text Solution

    |

  19. If theta+phi=(pi)/(2)andsintheta=(1)/(2) , then the value of sinphi ...

    Text Solution

    |

  20. If 0^(@)ltthetalt90^(@)and2sin^(2)theta+3costheta=3 , then the value...

    Text Solution

    |