Home
Class 14
MATHS
If (rcostheta-sqrt(3))^(2)+(rsintheta-1...

If `(rcostheta-sqrt(3))^(2)+(rsintheta-1)^(2)=0` then the value of `(rtantheta+sectheta)/(rsec theta+tantheta)` is equal to

A

`(4)/(5)`

B

`(5)/(4)`

C

`(sqrt(3))/(4)`

D

`(sqrt(5))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the equation: \[ (r \cos \theta - \sqrt{3})^2 + (r \sin \theta - 1)^2 = 0 \] ### Step 1: Analyze the equation Since the sum of two squares is equal to zero, each square must be individually equal to zero. Thus, we can set up two equations: 1. \( r \cos \theta - \sqrt{3} = 0 \) 2. \( r \sin \theta - 1 = 0 \) ### Step 2: Solve for \( r \cos \theta \) and \( r \sin \theta \) From the first equation: \[ r \cos \theta = \sqrt{3} \implies \cos \theta = \frac{\sqrt{3}}{r} \] From the second equation: \[ r \sin \theta = 1 \implies \sin \theta = \frac{1}{r} \] ### Step 3: Use the Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \left(\frac{1}{r}\right)^2 + \left(\frac{\sqrt{3}}{r}\right)^2 = 1 \] This simplifies to: \[ \frac{1}{r^2} + \frac{3}{r^2} = 1 \] \[ \frac{4}{r^2} = 1 \implies r^2 = 4 \implies r = 2 \] ### Step 4: Find \( \theta \) Now substituting \( r = 2 \) back into the equations for \( \sin \theta \) and \( \cos \theta \): \[ \sin \theta = \frac{1}{2} \quad \text{and} \quad \cos \theta = \frac{\sqrt{3}}{2} \] This corresponds to \( \theta = 30^\circ \) (or \( \frac{\pi}{6} \) radians). ### Step 5: Calculate \( \frac{r \tan \theta + \sec \theta}{r \sec \theta + \tan \theta} \) Now we can substitute \( r = 2 \) and \( \theta = 30^\circ \): - \( \tan 30^\circ = \frac{1}{\sqrt{3}} \) - \( \sec 30^\circ = \frac{2}{\sqrt{3}} \) Substituting these values into the expression: \[ \frac{2 \cdot \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}}{2 \cdot \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}} \] ### Step 6: Simplify the expression The numerator becomes: \[ \frac{2}{\sqrt{3}} + \frac{2}{\sqrt{3}} = \frac{4}{\sqrt{3}} \] The denominator becomes: \[ \frac{4}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{5}{\sqrt{3}} \] Thus, we have: \[ \frac{\frac{4}{\sqrt{3}}}{\frac{5}{\sqrt{3}}} = \frac{4}{5} \] ### Final Answer The value of \( \frac{r \tan \theta + \sec \theta}{r \sec \theta + \tan \theta} \) is: \[ \boxed{\frac{4}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

(tantheta-sectheta)^2

If tantheta + sectheta = 2 , then tantheta is equal to

tantheta-tantheta/2=sectheta/2

If sintheta = (3)/(5) , then find the value of tantheta and sectheta .

sqrt(2)sectheta+tantheta=1

If sectheta - tantheta =3 then costheta is equal to :

If tantheta+sectheta=sqrt3, then: theta=

tantheta+sectheta=sqrt(3)

If 4costheta-3sectheta=2tantheta , then theta is equal to

In tantheta+sec theta=sqrt3,0ltthetaltpi, then theta is equal to

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If theta is a positive acute angle and "cosec"theta=sqrt(3) , then ...

    Text Solution

    |

  2. If theta is a positive acute angle and 4cos^(2)theta-4costheta+1=0...

    Text Solution

    |

  3. If (rcostheta-sqrt(3))^(2)+(rsintheta-1)^(2)=0 then the value of (...

    Text Solution

    |

  4. The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-...

    Text Solution

    |

  5. If sin(theta+18^(@))=cos60^(@)(0ltthetalt90^(@)) , then the value o...

    Text Solution

    |

  6. Let A,B,C,D be the angles of a quadrilateral . If they are con...

    Text Solution

    |

  7. Find the value of sin75^(@).

    Text Solution

    |

  8. ABC is a right angled triangle right angled at BandangleA=60^(@)...

    Text Solution

    |

  9. If tan2theta.tan3theta=1 , where 0^(@)lt theta lt90^(@) then the v...

    Text Solution

    |

  10. If cos^(2)alpha-sin^(2)alpha=tan^(2)beta, then the value of cos^(...

    Text Solution

    |

  11. If tan(A+B)=sqrt(3)andtan(A-B)=(1)/(sqrt(3)),angleA+angleBlt90^(@)AgeB...

    Text Solution

    |

  12. The value of (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta) is eq...

    Text Solution

    |

  13. If theta+phi=(pi)/(2)andsintheta=(1)/(2) , then the value of sinphi ...

    Text Solution

    |

  14. If 0^(@)ltthetalt90^(@)and2sin^(2)theta+3costheta=3 , then the value...

    Text Solution

    |

  15. The value of theta(0lethetale90^(@)) satisfying 2sin^(2)theta=3costh...

    Text Solution

    |

  16. If a(tantheta+cottheta)=1,sintheta+costheta=b with 0^(@)ltthetalt90^(...

    Text Solution

    |

  17. If A is an acute angle and cot A + cosec A = 3 , then the value ...

    Text Solution

    |

  18. The simplest value of sin^(2)x+2tan^(2)x-2sec^(2)x+cos^(2)x is

    Text Solution

    |

  19. The value of (cos^(3)theta+sin^(3)theta)/(costheta+sintheta)+(cos^(3...

    Text Solution

    |

  20. If theta is a positive acute angle and "cosec"theta+cottheta=sqrt...

    Text Solution

    |