Home
Class 14
MATHS
The value of (sin25^(@)cos65^(@)+cos25...

The value of `(sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-cosec^(2)20^(@))`

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sin 25^{\circ} \cos 65^{\circ} + \cos 25^{\circ} \sin 65^{\circ}) / (\tan^{2} 70^{\circ} - \csc^{2} 20^{\circ})\), we can follow these steps: ### Step 1: Simplify the numerator The numerator is \(\sin 25^{\circ} \cos 65^{\circ} + \cos 25^{\circ} \sin 65^{\circ}\). This expression can be recognized as the sine addition formula: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] Here, \(a = 25^{\circ}\) and \(b = 65^{\circ}\). Therefore, we can rewrite the numerator as: \[ \sin(25^{\circ} + 65^{\circ}) = \sin(90^{\circ}) = 1 \] ### Step 2: Simplify the denominator The denominator is \(\tan^{2} 70^{\circ} - \csc^{2} 20^{\circ}\). We can use the identities for tangent and cosecant: \[ \tan^{2} \theta = \frac{\sin^{2} \theta}{\cos^{2} \theta} \] \[ \csc^{2} \theta = \frac{1}{\sin^{2} \theta} \] Now, we know that \(70^{\circ} + 20^{\circ} = 90^{\circ}\), which means: \[ \csc^{2} 20^{\circ} = \sec^{2} 70^{\circ} \] Thus, we can rewrite the denominator: \[ \tan^{2} 70^{\circ} - \sec^{2} 70^{\circ} \] Using the identity \(\sec^{2} \theta = 1 + \tan^{2} \theta\), we find: \[ \tan^{2} 70^{\circ} - \sec^{2} 70^{\circ} = \tan^{2} 70^{\circ} - (1 + \tan^{2} 70^{\circ}) = -1 \] ### Step 3: Combine the results Now we can substitute back into the original expression: \[ \frac{1}{-1} = -1 \] ### Final Answer The value of the expression is \(-1\). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)27^(@)-cos ec^(2)20^(@))

The value of (sin65^(@))/(cos25^(@)) is

The value of (sin 20^(@)cos70^(@)+ cos20^(@)sin70^(@))/(sin23^(@)"cosec"23^(@)+cos23^(@)sec23^(@)) is _________.

2sin65^@cos25^@=

Evaluate: sin 25^(@) cos 65^(@) + cos 25^(@) sin 65^(@) .

Find the value of (sin25^(@))/(cos35^(@))-(cos25^(@))/(sin35^(@))

sin65^(@)+sin25^(@)=

sin65^(@)+cos65^(@)=sqrt(2)cos20^(@)

The value of (sin 85^@ - sin 35^@)/(cos 65^@) is

Find tan^(2)25^(@)-cot^(2)65^(@)

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If theta is a positive acute angle and 4cos^(2)theta-4costheta+1=0...

    Text Solution

    |

  2. If (rcostheta-sqrt(3))^(2)+(rsintheta-1)^(2)=0 then the value of (...

    Text Solution

    |

  3. The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-...

    Text Solution

    |

  4. If sin(theta+18^(@))=cos60^(@)(0ltthetalt90^(@)) , then the value o...

    Text Solution

    |

  5. Let A,B,C,D be the angles of a quadrilateral . If they are con...

    Text Solution

    |

  6. Find the value of sin75^(@).

    Text Solution

    |

  7. ABC is a right angled triangle right angled at BandangleA=60^(@)...

    Text Solution

    |

  8. If tan2theta.tan3theta=1 , where 0^(@)lt theta lt90^(@) then the v...

    Text Solution

    |

  9. If cos^(2)alpha-sin^(2)alpha=tan^(2)beta, then the value of cos^(...

    Text Solution

    |

  10. If tan(A+B)=sqrt(3)andtan(A-B)=(1)/(sqrt(3)),angleA+angleBlt90^(@)AgeB...

    Text Solution

    |

  11. The value of (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta) is eq...

    Text Solution

    |

  12. If theta+phi=(pi)/(2)andsintheta=(1)/(2) , then the value of sinphi ...

    Text Solution

    |

  13. If 0^(@)ltthetalt90^(@)and2sin^(2)theta+3costheta=3 , then the value...

    Text Solution

    |

  14. The value of theta(0lethetale90^(@)) satisfying 2sin^(2)theta=3costh...

    Text Solution

    |

  15. If a(tantheta+cottheta)=1,sintheta+costheta=b with 0^(@)ltthetalt90^(...

    Text Solution

    |

  16. If A is an acute angle and cot A + cosec A = 3 , then the value ...

    Text Solution

    |

  17. The simplest value of sin^(2)x+2tan^(2)x-2sec^(2)x+cos^(2)x is

    Text Solution

    |

  18. The value of (cos^(3)theta+sin^(3)theta)/(costheta+sintheta)+(cos^(3...

    Text Solution

    |

  19. If theta is a positive acute angle and "cosec"theta+cottheta=sqrt...

    Text Solution

    |

  20. If cos alpha+secalpha = (sqrt(3)) then the value of cos^...

    Text Solution

    |