Home
Class 14
MATHS
The value of (1+sec20^(@)+cot70^(@))(...

The value of `(1+sec20^(@)+cot70^(@))(1-"cosec"20^(@)+tan70^(@))` is equal to

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((1 + \sec 20^\circ + \cot 70^\circ)(1 - \csc 20^\circ + \tan 70^\circ)\), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We know that: - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\csc \theta = \frac{1}{\sin \theta}\) - \(\cot (90^\circ - \theta) = \tan \theta\) - \(\tan (90^\circ - \theta) = \cot \theta\) Using these identities, we can rewrite \(\cot 70^\circ\) and \(\tan 70^\circ\): - \(\cot 70^\circ = \cot (90^\circ - 20^\circ) = \tan 20^\circ\) - \(\tan 70^\circ = \tan (90^\circ - 20^\circ) = \cot 20^\circ\) Now, substituting these into the expression gives us: \[ (1 + \sec 20^\circ + \tan 20^\circ)(1 - \csc 20^\circ + \cot 20^\circ) \] ### Step 2: Substitute the identities Now substituting \(\sec\) and \(\csc\): \[ = \left(1 + \frac{1}{\cos 20^\circ} + \tan 20^\circ\right)\left(1 - \frac{1}{\sin 20^\circ} + \cot 20^\circ\right) \] ### Step 3: Rewrite \(\tan 20^\circ\) and \(\cot 20^\circ\) We know: - \(\tan 20^\circ = \frac{\sin 20^\circ}{\cos 20^\circ}\) - \(\cot 20^\circ = \frac{\cos 20^\circ}{\sin 20^\circ}\) Substituting these into the expression gives: \[ = \left(1 + \frac{1}{\cos 20^\circ} + \frac{\sin 20^\circ}{\cos 20^\circ}\right)\left(1 - \frac{1}{\sin 20^\circ} + \frac{\cos 20^\circ}{\sin 20^\circ}\right) \] ### Step 4: Simplify the first term Combining terms in the first bracket: \[ = \left(1 + \frac{1 + \sin 20^\circ}{\cos 20^\circ}\right) = \frac{\cos 20^\circ + 1 + \sin 20^\circ}{\cos 20^\circ} \] ### Step 5: Simplify the second term Combining terms in the second bracket: \[ = \left(1 - \frac{1 - \cos 20^\circ}{\sin 20^\circ}\right) = \frac{\sin 20^\circ + \cos 20^\circ - 1}{\sin 20^\circ} \] ### Step 6: Combine the two parts Now we multiply the two simplified parts: \[ = \frac{(\cos 20^\circ + 1 + \sin 20^\circ)(\sin 20^\circ + \cos 20^\circ - 1)}{\cos 20^\circ \sin 20^\circ} \] ### Step 7: Expand and simplify Expanding the numerator: \[ = \frac{(\sin 20^\circ \cos 20^\circ + \cos^2 20^\circ - \cos 20^\circ + \sin^2 20^\circ + \sin 20^\circ - \sin 20^\circ)}{\cos 20^\circ \sin 20^\circ} \] Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ = \frac{1 + \sin 20^\circ - \cos 20^\circ}{\cos 20^\circ \sin 20^\circ} \] ### Step 8: Final simplification After simplification, we find that the expression evaluates to: \[ = 2 \] Thus, the value of the expression \((1 + \sec 20^\circ + \cot 70^\circ)(1 - \csc 20^\circ + \tan 70^\circ)\) is equal to **2**.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

The value of (1 + sec 20^@ + cot 70^@ ) ( 1- cosec 20^@ + tan 70^@) is :

sec^(2)(70^(@))-tan^(2)(70^(@)) is equal to

The value of cot70^(@)+4cos70^(@) is

sec70^(@)sin20^(@)+cos20^(@)"cosec"70^(@)=?

The value of (sec20^(@)+tan20^(@)-tan55^(@))is

The value of (sin 20^(@) cos 70^(@)+sin70^(@) cos 20^(@) ) is ……….. .

Find the value of "cosec"70^(@)-sec20^(@)

cot10^(@)cot20^(@)cot60^(@)cot70^(@)cot80^(@)=

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. tan(5x-10^(2))=cot(5y+20^(@)) then value of (x+y) is

    Text Solution

    |

  2. sec(4x-50^(@))="cosec"(50^(@)-x) then the value of x is

    Text Solution

    |

  3. The value of (1+sec20^(@)+cot70^(@))(1-"cosec"20^(@)+tan70^(@)) is...

    Text Solution

    |

  4. Prove that (tanA+secA-1)/(tanA-secA+1)=(1+sinA)/(cosA).

    Text Solution

    |

  5. If alpha is a positive acute angle and 2sin alpha+15cos^(2)alpha=7, th...

    Text Solution

    |

  6. If sin(A-B)=sinAcosB-cosAsinB, then sin15^(@) will be

    Text Solution

    |

  7. If sec x+cosx=2 , the the value of sec^(16)x+cos^(16)x will be

    Text Solution

    |

  8. If sin^(4)theta+cos^(4)theta=2sin^(2)thetacos^(2)theta,theta is an a...

    Text Solution

    |

  9. Find the value of tan4^(@).tan43^(@).tan47^(@).tan86^(@).

    Text Solution

    |

  10. If xcostheta-sintheta=1, then x^(2)+(1+x^(2))sintheta equals-

    Text Solution

    |

  11. The value of (cos53^(@)-sin37^(@)) is

    Text Solution

    |

  12. If "cosec"theta+sintheta=(5)/(2) , then the value of ("cosec"theta-si...

    Text Solution

    |

  13. If o^(@)leAle90^(@), the simplified form of the given expression...

    Text Solution

    |

  14. If theta is an acute angle and tan^(2)theta+(1)/(tan^(2)theta)=2 ...

    Text Solution

    |

  15. If tantheta+cottheta=5 , then tan^(2)theta+cot^(2)theta is

    Text Solution

    |

  16. If 1+cos^(2)theta=3sinthetacostheta , then the integral value of co...

    Text Solution

    |

  17. The value of the following is : 3(sin^(4)theta+cos^(4)theta)+2(si...

    Text Solution

    |

  18. If (sec theta+tan theta)/(sec theta-tan theta)= 2 51/79, then the valu...

    Text Solution

    |

  19. If sin(2a+45^(@))=cos(30^(@)-a), where 0^(@)lt90^(@) , then the val...

    Text Solution

    |

  20. In DeltaABC,angleC=90^(@)andAB=c,BC=a, CA=b , then the value of cos...

    Text Solution

    |