Home
Class 14
MATHS
The value of the following is : 3(s...

The value of the following is : `3(sin^(4)theta+cos^(4)theta)+2(sin^(6)theta+cos^(6)theta)+12sin^(2)thetacos^(2)theta`

A

0

B

2

C

3

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 3(\sin^4 \theta + \cos^4 \theta) + 2(\sin^6 \theta + \cos^6 \theta) + 12 \sin^2 \theta \cos^2 \theta \), we will break it down step by step. ### Step 1: Simplifying \(\sin^4 \theta + \cos^4 \theta\) Using the identity \( a^2 + b^2 = (a + b)^2 - 2ab \), we can express \(\sin^4 \theta + \cos^4 \theta\) as follows: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ \sin^4 \theta + \cos^4 \theta = 1^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] ### Step 2: Simplifying \(\sin^6 \theta + \cos^6 \theta\) Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \), we can express \(\sin^6 \theta + \cos^6 \theta\) as follows: \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) \] Again, since \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ \sin^6 \theta + \cos^6 \theta = 1(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) = \sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta \] Substituting the value from Step 1: \[ \sin^6 \theta + \cos^6 \theta = (1 - 2\sin^2 \theta \cos^2 \theta) - \sin^2 \theta \cos^2 \theta = 1 - 3\sin^2 \theta \cos^2 \theta \] ### Step 3: Substitute back into the original expression Now we substitute the simplified forms back into the original expression: \[ 3(\sin^4 \theta + \cos^4 \theta) + 2(\sin^6 \theta + \cos^6 \theta) + 12 \sin^2 \theta \cos^2 \theta \] Substituting the results: \[ = 3(1 - 2\sin^2 \theta \cos^2 \theta) + 2(1 - 3\sin^2 \theta \cos^2 \theta) + 12 \sin^2 \theta \cos^2 \theta \] Expanding this: \[ = 3 - 6\sin^2 \theta \cos^2 \theta + 2 - 6\sin^2 \theta \cos^2 \theta + 12 \sin^2 \theta \cos^2 \theta \] Combining like terms: \[ = 5 + (12 - 6 - 6)\sin^2 \theta \cos^2 \theta = 5 + 0\sin^2 \theta \cos^2 \theta = 5 \] ### Final Answer The value of the expression is \( \boxed{5} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

Prove that: sin^(6) theta + cos^(6) theta =1 - 3 sin^(2) theta cos^(2) theta

Find the value of 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)-(sin^(2)theta+cos^(2)theta)^(2)

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

Prove that cos^(6)theta+sin^(6)theta=1-3sin^(2)theta cos^(2)theta

What is sin^(6)theta+cos^(6)theta+2sin^(2)thetacos^(2)theta equal to ?

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If tantheta+cottheta=5 , then tan^(2)theta+cot^(2)theta is

    Text Solution

    |

  2. If 1+cos^(2)theta=3sinthetacostheta , then the integral value of co...

    Text Solution

    |

  3. The value of the following is : 3(sin^(4)theta+cos^(4)theta)+2(si...

    Text Solution

    |

  4. If (sec theta+tan theta)/(sec theta-tan theta)= 2 51/79, then the valu...

    Text Solution

    |

  5. If sin(2a+45^(@))=cos(30^(@)-a), where 0^(@)lt90^(@) , then the val...

    Text Solution

    |

  6. In DeltaABC,angleC=90^(@)andAB=c,BC=a, CA=b , then the value of cos...

    Text Solution

    |

  7. If tantheta-cottheta=0andtheta is positive acute angle , then the ...

    Text Solution

    |

  8. The value of cot41^(@).cot42^(@).cot43^(@).cot44^(@).cot45^(@).cot46...

    Text Solution

    |

  9. If x=asintheta-bcostheta,y=acostheta+bsintheta , then which of the ...

    Text Solution

    |

  10. If 5costheta+12sintheta=13,0^(@)ltthetalt90^(@) , then the value of...

    Text Solution

    |

  11. If 7sin^(2)theta+cos^(2)theta=4,0^(@)lt theta lt90^(@), then the value...

    Text Solution

    |

  12. The value of ("cosec"a-sina)(seca-cosa)(tana+cota) is

    Text Solution

    |

  13. ((+tan^(2)A)cotA)/("cosec"^(2)A)is equal to

    Text Solution

    |

  14. If tan(A-B)=x , then the value of x is

    Text Solution

    |

  15. The value of the following is : (tan20^(@))^(2)/(("cosec"70^(@))^(2...

    Text Solution

    |

  16. If 0^(@)ltthetalt90^(@)and"cosectheta=cot^(2)theta then the value ...

    Text Solution

    |

  17. If 4sin^(2)theta-1=0and angletheta is less than 90^(@) , the value ...

    Text Solution

    |

  18. Find numerical value of (9)/("cosec"^(2)theta)+4cos^(2)theta+(5)/(1...

    Text Solution

    |

  19. If costheta=(p)/(sqrt(p^(2)+q^(2))) then the value of tantheta i...

    Text Solution

    |

  20. If x="cosec"theta-sinthetaandy=sectheta-costheta, then the relation...

    Text Solution

    |