Home
Class 14
MATHS
The value of the following is : (tan2...

The value of the following is : `(tan20^(@))^(2)/(("cosec"70^(@))^(2))+((cot20^(@))^(2))/("sec70^(@))^(2)+2tan15^(@).tan45^(@).tan75^(@)`

A

1

B

4

C

3

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression: \[ \frac{(\tan 20^\circ)^2}{(\csc 70^\circ)^2} + \frac{(\cot 20^\circ)^2}{(\sec 70^\circ)^2} + 2 \tan 15^\circ \tan 45^\circ \tan 75^\circ \] we will follow these steps: ### Step 1: Rewrite the Trigonometric Functions Using the identities: - \(\csc \theta = \frac{1}{\sin \theta}\) - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) We can rewrite the expression as follows: \[ \frac{(\tan 20^\circ)^2}{(\csc 70^\circ)^2} = \frac{(\tan 20^\circ)^2}{\left(\frac{1}{\sin 70^\circ}\right)^2} = (\tan 20^\circ)^2 \cdot \sin^2 70^\circ \] \[ \frac{(\cot 20^\circ)^2}{(\sec 70^\circ)^2} = \frac{(\cot 20^\circ)^2}{\left(\frac{1}{\cos 70^\circ}\right)^2} = (\cot 20^\circ)^2 \cdot \cos^2 70^\circ \] ### Step 2: Simplify the Expression Now substituting these back into the expression, we have: \[ (\tan 20^\circ)^2 \cdot \sin^2 70^\circ + (\cot 20^\circ)^2 \cdot \cos^2 70^\circ + 2 \tan 15^\circ \tan 45^\circ \tan 75^\circ \] Using the identity \(\sin 70^\circ = \cos 20^\circ\) and \(\cos 70^\circ = \sin 20^\circ\), we can rewrite: \[ (\tan 20^\circ)^2 \cdot \cos^2 20^\circ + (\cot 20^\circ)^2 \cdot \sin^2 20^\circ + 2 \tan 15^\circ \cdot 1 \cdot \tan 75^\circ \] ### Step 3: Further Simplification Using the identity \(\tan 75^\circ = \cot 15^\circ\): \[ (\tan 20^\circ)^2 \cdot \cos^2 20^\circ + (\cot 20^\circ)^2 \cdot \sin^2 20^\circ + 2 \tan 15^\circ \cdot \cot 15^\circ \] Since \(\tan 15^\circ \cdot \cot 15^\circ = 1\): \[ (\tan 20^\circ)^2 \cdot \cos^2 20^\circ + (\cot 20^\circ)^2 \cdot \sin^2 20^\circ + 2 \] ### Step 4: Use the Pythagorean Identity Now, we can simplify the first two terms: \[ (\tan 20^\circ)^2 \cdot \cos^2 20^\circ + \frac{\cos^2 20^\circ}{\sin^2 20^\circ} \cdot \sin^2 20^\circ = \tan^2 20^\circ \cdot \cos^2 20^\circ + \cos^2 20^\circ \] Factoring out \(\cos^2 20^\circ\): \[ \cos^2 20^\circ (\tan^2 20^\circ + 1) + 2 \] Using the identity \(\tan^2 \theta + 1 = \sec^2 \theta\): \[ \cos^2 20^\circ \cdot \sec^2 20^\circ + 2 = 1 + 2 = 3 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

Find the value of ((tan20^(@))/(cos e)c70^(@))^(2)+((cot20^(@))/(sec70^(@)))^(2)+2tan75^(@)tan45^(@)tan15^(@)

tan100^(@)+2tan70^(@)=

Without using trigonometric tables , evaluate : ((tan20^(@))/(cosec70^(@)))^(2)+((cot20^(@))/(sec70^(@)))^2+2tan 15^(@)tan37^(@)tan53^(@)tan60^(@)tan75^(@)

What is the value of (tan^(2)25^(@))/(cosec^(2)65^(@))+(cot^(2)25^(@))/(sec^(2)65^(@))+tan20^(@)45^(@)tan70^(@) ?

Without using the trigonometric tables, evaluate the following : (11)/(7) (sin 70^(@))/(cos 20^(@)) - (4)/(7) (cos 53^(@) "cosec" 37^(@))/(tan 15^(@) tan 35^(@) tan 55^(@) tan 75^(@))

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

What is the value of ( tan^(2) 25^(@) )/( cosec^(2) 65^(@) ) + ( cot^(2) 25^(@) ) /( sec^(2) 65^(@) ) + 2 tan 20^(@) tan 45^(@) tan 70^(@)?

(sin70^(@))/(cos20^(@))+(csc20^(@))/(sec70^(@))-2cos70^(@)csc20^(@)=0

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. ((+tan^(2)A)cotA)/("cosec"^(2)A)is equal to

    Text Solution

    |

  2. If tan(A-B)=x , then the value of x is

    Text Solution

    |

  3. The value of the following is : (tan20^(@))^(2)/(("cosec"70^(@))^(2...

    Text Solution

    |

  4. If 0^(@)ltthetalt90^(@)and"cosectheta=cot^(2)theta then the value ...

    Text Solution

    |

  5. If 4sin^(2)theta-1=0and angletheta is less than 90^(@) , the value ...

    Text Solution

    |

  6. Find numerical value of (9)/("cosec"^(2)theta)+4cos^(2)theta+(5)/(1...

    Text Solution

    |

  7. If costheta=(p)/(sqrt(p^(2)+q^(2))) then the value of tantheta i...

    Text Solution

    |

  8. If x="cosec"theta-sinthetaandy=sectheta-costheta, then the relation...

    Text Solution

    |

  9. The value of the expression sin^(2)1^(@)+sin^(2)11^(@)+sin^(2)21^(@...

    Text Solution

    |

  10. If costheta+sintheta=mandsectheta+"cosec"theta=n then the value of ...

    Text Solution

    |

  11. If (x-xtan^(2)30^(@))/(1+tan^(2)30^(@))=sin^(2)30^(@)+4cot^(2)45^(@)-...

    Text Solution

    |

  12. If (sintheta+costheta)/(sintheta-costheta)=3 then the value of s...

    Text Solution

    |

  13. If sin2theta=(sqrt(3))/(2) then the value of sin3theta is equal ...

    Text Solution

    |

  14. Value of the expression : (1+2sin60^(@)cos60^(@))/(sin60^(@)+cos60...

    Text Solution

    |

  15. If alpha+beta=90^(@) , then the expression (tanalpha)/(tanbeta)+sin^...

    Text Solution

    |

  16. If sinA-cosA=(sqrt(3)-1)/(2) , then the value of sin A . cos A is

    Text Solution

    |

  17. If tan((pi)/(2)-(theta)/(2))=sqrt(3), then the value of costheta is.

    Text Solution

    |

  18. The value of cos1^(@)cos2^(@)cos3^(@)…cos180^(@) is

    Text Solution

    |

  19. If cos20^(@)=mandcos70^(@)=n , then the value of m^(2)+n^(2) is

    Text Solution

    |

  20. What is the value of sec330^(@) ?

    Text Solution

    |