Home
Class 14
MATHS
Find the value of tantheta(1+sec2the...

Find the value of `tantheta(1+sec2theta)(1+sec4theta)(1+sec8theta)` .

A

`tan10theta`

B

`tan8theta`

C

`tan12theta`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \tan \theta (1 + \sec^2 \theta)(1 + \sec^4 \theta)(1 + \sec^8 \theta) \). ### Step-by-Step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ \tan \theta (1 + \sec^2 \theta)(1 + \sec^4 \theta)(1 + \sec^8 \theta) \] Recall that \( \sec^2 \theta = \frac{1}{\cos^2 \theta} \), so we can rewrite each term: \[ 1 + \sec^2 \theta = 1 + \frac{1}{\cos^2 \theta} = \frac{\cos^2 \theta + 1}{\cos^2 \theta} \] Similarly, \[ 1 + \sec^4 \theta = 1 + \frac{1}{\cos^4 \theta} = \frac{\cos^4 \theta + 1}{\cos^4 \theta} \] and \[ 1 + \sec^8 \theta = 1 + \frac{1}{\cos^8 \theta} = \frac{\cos^8 \theta + 1}{\cos^8 \theta} \] 2. **Combine the Terms**: Now we can express the entire product: \[ \tan \theta \cdot \frac{\cos^2 \theta + 1}{\cos^2 \theta} \cdot \frac{\cos^4 \theta + 1}{\cos^4 \theta} \cdot \frac{\cos^8 \theta + 1}{\cos^8 \theta} \] This simplifies to: \[ \tan \theta \cdot \frac{(\cos^2 \theta + 1)(\cos^4 \theta + 1)(\cos^8 \theta + 1)}{\cos^2 \theta \cos^4 \theta \cos^8 \theta} \] 3. **Substituting \( \tan \theta \)**: Recall that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \): \[ \frac{\sin \theta}{\cos \theta} \cdot \frac{(\cos^2 \theta + 1)(\cos^4 \theta + 1)(\cos^8 \theta + 1)}{\cos^2 \theta \cos^4 \theta \cos^8 \theta} \] 4. **Using Trigonometric Identities**: We can use the identity \( 1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right) \): - \( \cos^2 \theta + 1 = 2 \cos^2 \left(\frac{\theta}{2}\right) \) - \( \cos^4 \theta + 1 = 2 \cos^4 \left(\frac{\theta}{2}\right) \) - \( \cos^8 \theta + 1 = 2 \cos^8 \left(\frac{\theta}{2}\right) \) 5. **Final Simplification**: Plugging these back into the expression, we can simplify: \[ \tan \theta \cdot \frac{2 \cos^2 \left(\frac{\theta}{2}\right) \cdot 2 \cos^4 \left(\frac{\theta}{2}\right) \cdot 2 \cos^8 \left(\frac{\theta}{2}\right)}{\cos^2 \theta \cos^4 \theta \cos^8 \theta} \] This leads to: \[ \tan \theta \cdot 8 \cdot \frac{\cos^{14} \left(\frac{\theta}{2}\right)}{\cos^{14} \theta} \] Since \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we can express this as: \[ 8 \cdot \frac{\sin \theta \cos^{14} \left(\frac{\theta}{2}\right)}{\cos^{15} \theta} \] 6. **Final Result**: After simplification, we find that the value of the expression is: \[ \tan(8\theta) \] ### Conclusion: Thus, the value of \( \tan \theta (1 + \sec^2 \theta)(1 + \sec^4 \theta)(1 + \sec^8 \theta) \) is \( \tan(8\theta) \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan theta(1+sec2 theta)(1+sec4 theta)(1+sec8 theta) when theta=(pi)/(32)

(1-sec8 theta)/(1-sec4 theta)

(1+sec theta)/sec theta=

Prove that (tan 8 theta)/(tan theta)=(1+ sec 2 theta)(1+ sec 4 theta)(1+ sec 8 theta)

The value of tan((theta)/(2))(1+sec theta)(1+sec2 theta)+(1+sec2^(2)theta)...(1+sec2^(n)theta) is

Prove that (tan8 theta)/(tan theta)=(1+sec2 theta)(1+sec4 theta)(1+sec8 theta)

tan2 theta(sec8 theta-1)=tan8 theta(sec4 theta-1)

1+(tan^(2)theta)/((1+sec theta))=sec theta

Find the value of theta if sec^2theta+tan^2theta=1

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. (2sintheta)/(costheta(1+tan^(2)theta)) simplifies to :

    Text Solution

    |

  2. If tantheta(1)=1,sintheta(2)=(1)/(sqrt(2)) then the value of sin...

    Text Solution

    |

  3. Find the value of tantheta(1+sec2theta)(1+sec4theta)(1+sec8theta) ...

    Text Solution

    |

  4. If (sinx)/(1+cosx)+(sinx)/(1-cosx)=4,and0^(@)ltxlt90^(@) , then find ...

    Text Solution

    |

  5. The value of (sin65^(@))/(cos25^(@)) is

    Text Solution

    |

  6. If sintheta+cosectheta=2, the value of sin^(100)theta+cosec^(100)the...

    Text Solution

    |

  7. The value of (sec^(2)45^(@)-cot^(2)45^(@))-(sin^(2)30^(@)+sin^(2)60^...

    Text Solution

    |

  8. The value of the following is : (sinthetacosecthetatanthetacotthe...

    Text Solution

    |

  9. If costheta+sectheta=sqrt(3) , then the value of (cos^(3)theta+sec...

    Text Solution

    |

  10. If alpha+theta=(7pi)/(12)andtantheta=sqrt(3), then the value of ta...

    Text Solution

    |

  11. If 4sin^(2)theta-3=0andtheta is acute then what is the value of (c...

    Text Solution

    |

  12. Find the value of 8 cos10^(@)cos20^(@)cos40^(@) .

    Text Solution

    |

  13. What is the value of ((cottheta+cosec theta-1))/((cottheta-cosecthe...

    Text Solution

    |

  14. A vertical pole AB is standing at the centre B of a square PQR...

    Text Solution

    |

  15. For how many integral values of x , sinphi=((3x-2))/(4) , where 0...

    Text Solution

    |

  16. Find the value of cot (pi)/(32)-"tan"(pi)/(32)-2"tan"(pi)/(16)

    Text Solution

    |

  17. If sintheta=acosphiandcostheta=b sinphi then the value of (a^(2)-...

    Text Solution

    |

  18. If sec^(2)theta+tan^(2)theta=sqrt(3) , then the value of (sec^(4)...

    Text Solution

    |

  19. If pisintheta=1,picostheta=1, then the value of {sqrt(3)tan((2)/(3)t...

    Text Solution

    |

  20. Find the value of (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)

    Text Solution

    |