Home
Class 14
MATHS
If 7sin^(2)theta+3cos^(2)theta=4 then ...

If `7sin^(2)theta+3cos^(2)theta=4` then the value of `sectheta+cosectheta` is

A

`(2)/(sqrt(3))-2`

B

`(2)/(sqrt(3))+2`

C

`(2)/(sqrt(3))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(7\sin^2\theta + 3\cos^2\theta = 4\) and find the value of \(\sec\theta + \csc\theta\), we can follow these steps: ### Step 1: Rewrite the equation using the Pythagorean identity We know that \(\cos^2\theta = 1 - \sin^2\theta\). We can substitute this into the equation: \[ 7\sin^2\theta + 3(1 - \sin^2\theta) = 4 \] ### Step 2: Simplify the equation Distributing the \(3\) gives us: \[ 7\sin^2\theta + 3 - 3\sin^2\theta = 4 \] Combining like terms results in: \[ (7 - 3)\sin^2\theta + 3 = 4 \] This simplifies to: \[ 4\sin^2\theta + 3 = 4 \] ### Step 3: Isolate \(\sin^2\theta\) Subtract \(3\) from both sides: \[ 4\sin^2\theta = 1 \] Now, divide by \(4\): \[ \sin^2\theta = \frac{1}{4} \] ### Step 4: Solve for \(\sin\theta\) Taking the square root of both sides gives: \[ \sin\theta = \frac{1}{2} \quad \text{or} \quad \sin\theta = -\frac{1}{2} \] ### Step 5: Determine \(\theta\) The value of \(\theta\) for \(\sin\theta = \frac{1}{2}\) is: \[ \theta = 30^\circ \quad \text{or} \quad \theta = 150^\circ \] ### Step 6: Calculate \(\sec\theta + \csc\theta\) Now we need to find \(\sec\theta + \csc\theta\): \[ \sec\theta = \frac{1}{\cos\theta}, \quad \csc\theta = \frac{1}{\sin\theta} \] For \(\theta = 30^\circ\): \[ \sin 30^\circ = \frac{1}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2} \] Thus, \[ \sec 30^\circ = \frac{1}{\cos 30^\circ} = \frac{2}{\sqrt{3}}, \quad \csc 30^\circ = \frac{1}{\sin 30^\circ} = 2 \] Now adding these together: \[ \sec 30^\circ + \csc 30^\circ = \frac{2}{\sqrt{3}} + 2 \] ### Step 7: Simplify the expression To combine these, we can express \(2\) with a common denominator: \[ 2 = \frac{2\sqrt{3}}{\sqrt{3}} \] So, \[ \sec 30^\circ + \csc 30^\circ = \frac{2}{\sqrt{3}} + \frac{2\sqrt{3}}{\sqrt{3}} = \frac{2 + 2\sqrt{3}}{\sqrt{3}} \] ### Final Answer Thus, the value of \(\sec\theta + \csc\theta\) is: \[ \sec\theta + \csc\theta = \frac{2(1 + \sqrt{3})}{\sqrt{3}} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If 7sin^2theta + 3cos^2theta=4 ,then the value of sectheta+cosectheta is

If 7 sin^(2) theta + 3 cos^(2) theta = 4 , find the value of sec theta :

Knowledge Check

  • If 7sin^(2)theta+3cos^(2)theta=4 , then value of tantheta .

    A
    `(1)/(sqrt(3))`
    B
    `sqrt(3)`
    C
    `2sqrt(3)`
    D
    `(1)/(2sqrt(3))`
  • If 5sin^(2)theta+3cos^(2)theta=4 . Find the value of sin theta and cos theta :

    A
    `pm(1)/(sqrt2), pm(1)/(sqrt2)`
    B
    `pm(sqrt3)/(2),pmsqrt2`
    C
    `(sqrt3)/(2),(1)/(sqrt2)`
    D
    none of these
  • If theta be an acute angle and 7 sin^(2) theta + 3 cos^(@) theta = 4 , then the value of tan theta is

    A
    `sqrt3`
    B
    `1/sqrt3`
    C
    `1`
    D
    `0`
  • Similar Questions

    Explore conceptually related problems

    If 7sin^(2)theta+3 cos^(2)theta=4 , find tan theta .

    If 7 sin^2 theta+3 cos^2 theta=4 , then the value of tan theta is ( theta is acute angle) यदि 7 sin^2 theta+3 cos^2 theta=4 , तो tan theta का मान क्या है ( theta न्यून कोण है।) ?

    If 7 sin^2 theta+3 cos^2 theta=4 , then find value of tan theta .

    If 7sin^2 theta + 3 cos^2 theta = 4 , then the value of cos theta(0^@le theta le 90^@) is

    If 7sin^(2)theta+3cos^(2)theta=4 , then find tan theta .