Home
Class 14
MATHS
The value of the expression 2(sin^(...

The value of the expression `2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 ` is

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2(\sin^6 \theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta) + 1 \), we will follow these steps: ### Step 1: Simplify \( \sin^6 \theta + \cos^6 \theta \) We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = \sin^2 \theta \) and \( b = \cos^2 \theta \). Then, \[ \sin^6 \theta + \cos^6 \theta = (\sin^2 \theta + \cos^2 \theta)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) \] Since \( \sin^2 \theta + \cos^2 \theta = 1 \), we have: \[ \sin^6 \theta + \cos^6 \theta = \sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta \] ### Step 2: Simplify \( \sin^4 \theta + \cos^4 \theta \) We can use the identity: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta \] Again, since \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] ### Step 3: Substitute back into the original expression Now we substitute these results back into the original expression: \[ 2(\sin^6 \theta + \cos^6 \theta) - 3(\sin^4 \theta + \cos^4 \theta) + 1 \] Substituting the simplified forms: \[ = 2(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) - 3(1 - 2\sin^2 \theta \cos^2 \theta) + 1 \] ### Step 4: Expand and combine like terms Expanding this gives: \[ = 2\sin^4 \theta + 2\cos^4 \theta - 2\sin^2 \theta \cos^2 \theta - 3 + 6\sin^2 \theta \cos^2 \theta + 1 \] Combining like terms: \[ = 2\sin^4 \theta + 2\cos^4 \theta + 4\sin^2 \theta \cos^2 \theta - 2 \] ### Step 5: Use the identity for \( \sin^4 \theta + \cos^4 \theta \) Recall that \( \sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \): \[ = 2(1 - 2\sin^2 \theta \cos^2 \theta) + 4\sin^2 \theta \cos^2 \theta - 2 \] This simplifies to: \[ = 2 - 4\sin^2 \theta \cos^2 \theta + 4\sin^2 \theta \cos^2 \theta - 2 = 0 \] ### Final Result Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove : 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0 .

4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta) is equal to

The value of the expression sin^(6)theta+cos^(6)theta+3sin^(2)theta*cos^(2)theta equals

The value for 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

The value of the expression cos^(6)theta+sin^(6)theta+3sin^(2)theta cos^(2)theta=

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Find the value of 6(sin^(6)theta+cos^(6)theta)-9(sin^(4)theta+cos^(4)theta)+4