Home
Class 14
MATHS
If cosecA+cotA=x , then value of x is...

If `cosecA+cotA=x` , then value of x is

A

`(1)/((cosec A-cotA))`

B

`(1)/((secA-tanA))`

C

`(1)/((secA-cosA))`

D

`(1)/((sinA-cosA))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc A + \cot A = x \), we can follow these steps: ### Step 1: Rewrite the Trigonometric Functions We know that: \[ \csc A = \frac{1}{\sin A} \quad \text{and} \quad \cot A = \frac{\cos A}{\sin A} \] So, we can rewrite the equation as: \[ \csc A + \cot A = \frac{1}{\sin A} + \frac{\cos A}{\sin A} \] ### Step 2: Combine the Terms Since both terms have a common denominator of \( \sin A \), we can combine them: \[ \csc A + \cot A = \frac{1 + \cos A}{\sin A} \] Thus, we have: \[ x = \frac{1 + \cos A}{\sin A} \] ### Step 3: Rationalize the Expression To simplify further, we can multiply the numerator and the denominator by \( 1 - \cos A \): \[ x = \frac{(1 + \cos A)(1 - \cos A)}{\sin A(1 - \cos A)} \] ### Step 4: Apply the Difference of Squares Using the difference of squares in the numerator: \[ 1 + \cos A)(1 - \cos A) = 1 - \cos^2 A \] Thus, we can rewrite \( x \) as: \[ x = \frac{1 - \cos^2 A}{\sin A(1 - \cos A)} \] ### Step 5: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ 1 - \cos^2 A = \sin^2 A \] Substituting this into our equation gives: \[ x = \frac{\sin^2 A}{\sin A(1 - \cos A)} \] ### Step 6: Simplify the Expression Now, we can simplify: \[ x = \frac{\sin A}{1 - \cos A} \] ### Step 7: Final Expression Thus, the value of \( x \) is: \[ x = \frac{\sin A}{1 - \cos A} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If 15 cotA=8 , the value of sinA is :

If cosecA-cotA=1.3 , then find the value of cosecA+cotA .

If (cotA-cosecA)^(2)=x , then the value of x is

If A is an acute angle and cotA+ CosecA = 3, then the value of Cos A is equal to: यदि cotA+ CosecA = 3, तो Cos A का मान ज्ञात करें जहाँ A एक न्यून कोण है

If (1)/((tanA+cotA))=x , the the value of x is

If ((cotAcotB-1))/((cotB+cotA))=x then the value of x is

If x = cosecA + cosA and y = cosecA - cosA, then find the value of (2/(x+y))^2 +((x-y)/2)^2 -1 . यदि x = cosecA + cosA और y =cosecA - cosA, तो (2/(x+y))^2 +((x-y)/2)^2 -1 का मान ज्ञात करें:

If cotA=(7)/(24) , then the value of sin A is :

If cosecA =25/7 , then what is the value of Tan A? यदि cosecA =25/7 , है तो Tan A का मान क्या है: