Home
Class 14
MATHS
If (secA-cosA)(SecA+cosA)=x , then val...

If `(secA-cosA)(SecA+cosA)=`x , then value of x is

A

`cos^(2)A+cot^(2)A`

B

`sin^(2)A+tan^(2)A`

C

`sin^(2)A-tan^(2)A`

D

`cos^(2)A-cot^(2)A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem `(secA - cosA)(secA + cosA) = x`, we can follow these steps: ### Step 1: Recognize the Expression The expression `(secA - cosA)(secA + cosA)` can be recognized as a difference of squares. This follows the algebraic identity: \[ (A - B)(A + B) = A^2 - B^2 \] Here, we can let \( A = secA \) and \( B = cosA \). ### Step 2: Apply the Difference of Squares Formula Using the difference of squares formula, we can rewrite the expression: \[ x = sec^2A - cos^2A \] ### Step 3: Substitute Trigonometric Identities We know from trigonometric identities that: \[ sec^2A = 1 + tan^2A \] and \[ cos^2A = 1 - sin^2A \] Now we substitute these identities into our expression for \( x \): \[ x = (1 + tan^2A) - cos^2A \] ### Step 4: Substitute for cos^2A We can also express \( cos^2A \) in terms of \( sin^2A \): \[ cos^2A = 1 - sin^2A \] Thus, we can rewrite \( x \) as: \[ x = (1 + tan^2A) - (1 - sin^2A) \] ### Step 5: Simplify the Expression Now, simplify the expression: \[ x = 1 + tan^2A - 1 + sin^2A \] This simplifies to: \[ x = tan^2A + sin^2A \] ### Step 6: Final Expression Thus, we have the final expression for \( x \): \[ x = tan^2A + sin^2A \] ### Conclusion Therefore, the value of \( x \) is: \[ x = tan^2A + sin^2A \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If (sqrt(sec^(2)A-1))/(secA)=x , then the value of x is

If ((1+cosA))/(2)=x then the value of x is

If (sinA+cosA)/(cosA)=17/12 , then the value of (1-cosA)/(sinA) is: यदि (sinA+cosA)/(cosA)=17/12 ,है, तो (1-cosA)/(sinA) का मान क्या होगा ?

If (1+ cosA)(1-cosA) = 3/4 , find the value of sec A.

If (secA)/(sqrt((sec^(2)A-1)))=x then the value of x is

cosA(secA-cosA)(cotA+tanA)=?

(1+sinA-cosA)/(1+sinA+cosA)=

If sqrt((1+cosA)/(1-cosA))=(x)/(y) then the value of tan A is

secA(1-sinA)(secA+tanA)=1