Home
Class 14
MATHS
If (1)/((1+sinA))+(1)/(1-(sinA))=x, the...

If `(1)/((1+sinA))+(1)/(1-(sinA))=x`, then value of x is

A

`2cosec^(2)A`

B

`2sec^(2)A`

C

`2cosecA`

D

`2secA`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1}{1 + \sin A} + \frac{1}{1 - \sin A} = x, \] we will follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \((1 + \sin A)(1 - \sin A)\). ### Step 2: Rewrite the fractions We can rewrite the left-hand side using the common denominator: \[ \frac{1 - \sin A + 1 + \sin A}{(1 + \sin A)(1 - \sin A)}. \] ### Step 3: Simplify the numerator Now, simplify the numerator: \[ 1 - \sin A + 1 + \sin A = 2. \] ### Step 4: Write the expression Now, we can write the expression as: \[ \frac{2}{(1 + \sin A)(1 - \sin A)}. \] ### Step 5: Use the identity for the denominator Recall that \(1 - \sin^2 A = \cos^2 A\). Therefore, we can rewrite the denominator: \[ (1 + \sin A)(1 - \sin A) = 1 - \sin^2 A = \cos^2 A. \] ### Step 6: Substitute back into the expression Substituting this back into our expression gives: \[ x = \frac{2}{\cos^2 A}. \] ### Step 7: Use the secant function We know that \(\frac{1}{\cos^2 A} = \sec^2 A\). Thus, we can write: \[ x = 2 \sec^2 A. \] ### Final Answer The value of \(x\) is: \[ \boxed{2 \sec^2 A}. \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If tan^(2)B=(1-sinA)/(1+sinA) then what is the value of A+2B ?

(1+sinA-cosA)/(1+sinA+cosA)=

If sinA sinB sinC+cosAcosB=1, then the value of sinC is

What is (1+sinA)/(1-sinA)-(1-sinA)/(1+sinA) equal to ?

If sinA-cosA=(sqrt(3)-1)/(2) , then the value of sin A . cos A is

((2sinA)(1+sinA))/(1+sinA+cosA) is equal to:

((2sinA)(1+sinA))/(1+sinA+cosA) is equal to: