Home
Class 14
MATHS
If (costheta)/(1+sintheta)+(coshtheta)/...

If `(costheta)/(1+sintheta)+(coshtheta)/(1-sintheta)=4andtheta` is acute , then what is the value (in degrees) of `theta` ?

A

30

B

45

C

60

D

90

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\cos \theta}{1 + \sin \theta} + \frac{\cos \theta}{1 - \sin \theta} = 4, \] we will follow these steps: ### Step 1: Combine the fractions We start by finding a common denominator for the two fractions on the left side of the equation. The common denominator is \((1 + \sin \theta)(1 - \sin \theta)\). \[ \frac{\cos \theta (1 - \sin \theta) + \cos \theta (1 + \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)} = 4. \] ### Step 2: Simplify the numerator Now, we simplify the numerator: \[ \cos \theta (1 - \sin \theta) + \cos \theta (1 + \sin \theta) = \cos \theta (1 - \sin \theta + 1 + \sin \theta) = \cos \theta (2) = 2 \cos \theta. \] So, we rewrite the equation as: \[ \frac{2 \cos \theta}{(1 + \sin \theta)(1 - \sin \theta)} = 4. \] ### Step 3: Simplify the denominator The denominator can be simplified using the identity \(1 - \sin^2 \theta = \cos^2 \theta\): \[ (1 + \sin \theta)(1 - \sin \theta) = 1 - \sin^2 \theta = \cos^2 \theta. \] Thus, the equation becomes: \[ \frac{2 \cos \theta}{\cos^2 \theta} = 4. \] ### Step 4: Cross-multiply Cross-multiplying gives us: \[ 2 \cos \theta = 4 \cos^2 \theta. \] ### Step 5: Rearranging the equation Rearranging the equation leads to: \[ 4 \cos^2 \theta - 2 \cos \theta = 0. \] ### Step 6: Factor the equation Factoring out \(2 \cos \theta\): \[ 2 \cos \theta (2 \cos \theta - 1) = 0. \] This gives us two possible solutions: 1. \(2 \cos \theta = 0\) which leads to \(\cos \theta = 0\) (not valid since \(\theta\) is acute). 2. \(2 \cos \theta - 1 = 0\) which leads to \(\cos \theta = \frac{1}{2}\). ### Step 7: Find the angle The angle whose cosine is \(\frac{1}{2}\) in the acute range is: \[ \theta = 60^\circ. \] ### Final Answer Thus, the value of \(\theta\) is \[ \theta = 60^\circ. \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

If (costheta)/(1+sintheta)+(costheta)/(1-sintheta)=2sqrt(2) and theta is acute , then what is the value (in degrees ) of theta ?

If tan theta = 3//4 and theta is acute, then what is the value of sintheta ?

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

((1+sintheta+i costheta)/(1+sintheta-i costheta))^n is equal to

If (1+tan^(2)theta)=(625)/(49)andtheta is acute , then what is the value of (sqrt(sintheta+costheta)) ?

If (costheta+sintheta)/(costheta-sintheta)=8 then the value of cot theta is equal to:

(1-costheta)/(sintheta)+(sintheta)/(1-costheta) =___________.

If (1+ sintheta-costheta)/(1+ sintheta + costheta)+(1+sintheta+costheta)/(1+sintheta-costheta)= 4 , then which of the following values will be suitable for theta ?

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?