Home
Class 14
MATHS
What is the value of ((sinA-2sin^(...

What is the value of
`((sinA-2sin^(3)A))/((2cos^(3)A-cosA))`?

A

cot A

B

cosec A

C

sec A

D

tan A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin A - 2\sin^3 A}{2\cos^3 A - \cos A}\), we can follow these steps: ### Step 1: Factor the numerator and the denominator The numerator can be factored as follows: \[ \sin A - 2\sin^3 A = \sin A(1 - 2\sin^2 A) \] The denominator can be factored as: \[ 2\cos^3 A - \cos A = \cos A(2\cos^2 A - 1) \] ### Step 2: Rewrite the expression Now we can rewrite the original expression using these factored forms: \[ \frac{\sin A(1 - 2\sin^2 A)}{\cos A(2\cos^2 A - 1)} \] ### Step 3: Use trigonometric identities We know from trigonometric identities that: \[ 1 - 2\sin^2 A = \cos 2A \quad \text{and} \quad 2\cos^2 A - 1 = \cos 2A \] Thus, we can substitute these identities into our expression: \[ \frac{\sin A \cos 2A}{\cos A \cos 2A} \] ### Step 4: Simplify the expression Since \(\cos 2A\) is common in both the numerator and the denominator, we can cancel it out (assuming \(\cos 2A \neq 0\)): \[ \frac{\sin A}{\cos A} = \tan A \] ### Final Answer Thus, the value of the expression \(\frac{\sin A - 2\sin^3 A}{2\cos^3 A - \cos A}\) is: \[ \boxed{\tan A} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

Prove that: (sinA - 2sin^(3)A)/(2 cos^(3)A - cosA) = tan A

The value of 2sinA cos^(3)A -2sin^(3)A cosA is

If sin(A-B) =1//2 and cos(A+B)=1//2 , then what is the value of sinA cosA + sin^2A sinB cosB +cos^3 A cosB tanA यदि sin(A-B) =1//2 तथा cos(A+B)=1//2 ,का तो मान sinA cosA + sin^2A sinB cosB +cos^3 A cosB tanA क्या है?

If cosA=(3)/(4) , then what is the value of sin((A)/(2))sin((3A)/(2)) ?

If 3 tan A=4 , then find the value of (2 sinA-7 cos A)/(3 cosA+4) .

If cosec A =(13)/(12) then find the value of (2 sin A-3 cos A)/(4 sin A-9 cosA)

If cos A = 3//4 . then what is the value of sin ((A)/(2))sin((3A)/(2)) ?

The value of [(cos^(2)A(sinA+cosA))/("cosec"^(2)A(sinA-cosA))+(sin^(2)A(sinA-cosA))/(sec^(2)A(sinA+cosA))](sec^(2)A-"cosec"^(2)A)

If sinA+cosecA=3 , then find the value of (sin^(4)A+1)/(sin^(2)A) .