Home
Class 14
MATHS
If cosec(pi)/(4)-"sin"(pi)/(3)=x , then...

If `cosec(pi)/(4)-"sin"(pi)/(3)=x` , then the value of x is

A

`(4)/(sqrt(3))`

B

`((2sqrt(2)-sqrt(3)))/(2)`

C

`((1-sqrt(3)))/(sqrt(3))`

D

`sqrt(3)+2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{3}\right) = x \), we will follow these steps: ### Step 1: Calculate \( \csc\left(\frac{\pi}{4}\right) \) The cosecant function is the reciprocal of the sine function. Therefore, we need to find \( \sin\left(\frac{\pi}{4}\right) \). \[ \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Thus, \[ \csc\left(\frac{\pi}{4}\right) = \frac{1}{\sin\left(\frac{\pi}{4}\right)} = \frac{1}{\frac{\sqrt{2}}{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \] ### Step 2: Calculate \( \sin\left(\frac{\pi}{3}\right) \) Now, we calculate \( \sin\left(\frac{\pi}{3}\right) \). \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] ### Step 3: Substitute the values into the equation Now we substitute the values we found into the original equation. \[ x = \csc\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{3}\right) \] Substituting the values: \[ x = \sqrt{2} - \frac{\sqrt{3}}{2} \] ### Step 4: Find a common denominator To combine the terms, we can express \( \sqrt{2} \) with a common denominator of 2: \[ \sqrt{2} = \frac{2\sqrt{2}}{2} \] Thus, \[ x = \frac{2\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \] ### Step 5: Combine the fractions Now we can combine the fractions: \[ x = \frac{2\sqrt{2} - \sqrt{3}}{2} \] ### Conclusion So, the value of \( x \) is: \[ x = \frac{2\sqrt{2} - \sqrt{3}}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

cos((3pi)/4+x)-sin(pi/4-x)=?

If tan x=(-3)/(4) and (3 pi)/(2)

Knowledge Check

  • If sin^(-1) ((x)/(5))+ cosec^(-1) ((5)/(4))=(pi)/(2) , then the value of x is

    A
    1
    B
    3
    C
    4
    D
    5
  • If cosec . (pi)/(32)+ cosec. (pi)/(16)+ cosec. (pi)/(8)+ cosec. (pi)/(4)+ cosec. (pi)/(2)= cot. (pi)/(k) , then the value of k is

    A
    64
    B
    96
    C
    48
    D
    32
  • If "tan"(pi)/(3)+"cosec"(pi)/(6)=x , then x is

    A
    `((1-sqrt(2)))/(sqrt(2))`
    B
    `((sqrt(3)+4))/(2sqrt(3))`
    C
    `sqrt(3)+2`
    D
    `((2sqrt(2)-1))/(2)`
  • Similar Questions

    Explore conceptually related problems

    If tan^(-1)(x^(2)+3|x|-4)+cot^(-1)(4 pi+sin^(-1)sin14)=(pi)/(2), then the value of sin^(-1)sin2x is (a)6-2 pi( b) 2 pi-6( c) pi-3 (d) 3-pi

    If cos x=-(sqrt(15))/(4) and (pi)/(2)

    If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

    If sin^(-1)(x/13) + cosec^(-1) (13/12)= pi/2 , then the value of x is

    If sin^(-1)(x/13)+"cosec"^(-1)(13/12)=pi/2 , then the value of x is