Home
Class 14
MATHS
What is the value of [tan^(2)(90-the...

What is the value of `[tan^(2)(90-theta)-sin^(2)(90-theta)]cosec^(2)(90-theta)cot^(2)(90-theta)` ?

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([tan^2(90^\circ - \theta) - sin^2(90^\circ - \theta)] \cdot cosec^2(90^\circ - \theta) \cdot cot^2(90^\circ - \theta)\), we will follow these steps: ### Step 1: Use Trigonometric Identities We know the following trigonometric identities: - \(tan(90^\circ - \theta) = cot(\theta)\) - \(sin(90^\circ - \theta) = cos(\theta)\) - \(cosec(90^\circ - \theta) = sec(\theta)\) - \(cot(90^\circ - \theta) = tan(\theta)\) Using these identities, we can rewrite the expression: \[ tan^2(90^\circ - \theta) = cot^2(\theta) \] \[ sin^2(90^\circ - \theta) = cos^2(\theta) \] \[ cosec^2(90^\circ - \theta) = sec^2(\theta) \] \[ cot^2(90^\circ - \theta) = tan^2(\theta) \] ### Step 2: Substitute the Identities into the Expression Now substituting these into the original expression, we have: \[ [cot^2(\theta) - cos^2(\theta)] \cdot sec^2(\theta) \cdot tan^2(\theta) \] ### Step 3: Simplify the Expression Next, we can simplify the expression inside the brackets: \[ cot^2(\theta) = \frac{cos^2(\theta)}{sin^2(\theta)} \] Thus, the expression becomes: \[ \left[\frac{cos^2(\theta)}{sin^2(\theta)} - cos^2(\theta)\right] \cdot sec^2(\theta) \cdot tan^2(\theta) \] Finding a common denominator inside the brackets: \[ \left[\frac{cos^2(\theta) - cos^2(\theta) \cdot sin^2(\theta)}{sin^2(\theta)}\right] \cdot sec^2(\theta) \cdot tan^2(\theta) \] ### Step 4: Factor Out the Common Terms Factoring out \(cos^2(\theta)\): \[ \frac{cos^2(\theta)(1 - sin^2(\theta))}{sin^2(\theta)} \cdot sec^2(\theta) \cdot tan^2(\theta) \] Using the identity \(1 - sin^2(\theta) = cos^2(\theta)\): \[ \frac{cos^2(\theta) \cdot cos^2(\theta)}{sin^2(\theta)} \cdot sec^2(\theta) \cdot tan^2(\theta) \] ### Step 5: Substitute Back the Trigonometric Functions Now substituting back \(sec^2(\theta) = \frac{1}{cos^2(\theta)}\) and \(tan^2(\theta) = \frac{sin^2(\theta)}{cos^2(\theta)}\): The expression simplifies to: \[ \frac{cos^4(\theta)}{sin^2(\theta)} \cdot \frac{1}{cos^2(\theta)} \cdot \frac{sin^2(\theta)}{cos^2(\theta)} \] ### Step 6: Cancel Out Terms Now we can cancel out terms: \[ \frac{cos^4(\theta) \cdot sin^2(\theta)}{sin^2(\theta) \cdot cos^2(\theta) \cdot cos^2(\theta)} = 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

What is the value of [tan^2 (90- theta)-sec^2 (90 - theta)] tan^2 (90- theta) cot^2 (90 -theta) ?

tan^(2)(90^(@) - theta) - cosec^(2) theta =

What is the value of [1-tan(90-theta)+sec(90-theta)]//[tan(90-theta)+sec(90-theta)+1] ?

What is the value of ([tan(90-theta)+sec(90-theta)-1])/([tan(90-theta)-sec(90-theta)+1]) ?

Write the value of "cosec"^(2)(90^(@)-theta)-tan^(2)theta.

What is the value of [1 - tan (90-theta) + sec (90 -theta)]//[tan (90 - theta)+ sec (90- theta) + 1] ? [1 - tan (90-theta) + sec (90 -theta)]//[tan (90 - theta)+ sec (90- theta) + 1] का मान क्या है?

What is the value of [1-tan(90^(@)-theta)]^(2)*[cos^(2)(90^(@)-theta) -1] ?

What is the value of sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] ? sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] का मान क्या है?

What is the value of (1)/( sin^(4) (90 - theta)) + (1)/([cos ^(2) (90 - theta)] - 1) ?

What is the simplified value of sin^(2) (90- theta) - [({sin(90-theta) sin theta})/(tan theta)] ?

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. What is the value of sin (B - C) cos (A- D) + sin (A-B) cos (C -D) + s...

    Text Solution

    |

  2. What is the value of

    Text Solution

    |

  3. What is the value of [tan^(2)(90-theta)-sin^(2)(90-theta)]cosec^(2...

    Text Solution

    |

  4. If 4sin^(2)theta-3=0andtheta is acute then what is the value of (c...

    Text Solution

    |

  5. If (costheta)/(1+sintheta)+(coshtheta)/(1-sintheta)=4andtheta is acu...

    Text Solution

    |

  6. If (1)/(sintheta+cosectheta)=(1)/(2) , then what is the value of s...

    Text Solution

    |

  7. What is the value of (tan^(2)25^(@))/(cosec^(2)65^(@))+(cot^(2)25^(@)...

    Text Solution

    |

  8. If cosectheta+cosec^(2)theta=1 , then what is the value of (cot^(...

    Text Solution

    |

  9. If 2cos^(2)theta-1=0andtheta is acute then what is the value of (...

    Text Solution

    |

  10. If (1)/(costheta+sectheta)=(1)/(2) , what is the value of cos^(100)th...

    Text Solution

    |

  11. What is the simplified value of 1+cotAcot((A)/(2))?

    Text Solution

    |

  12. What is the simplified value of (3)/(cosec^(2)theta)+(5)/(1+tan^(2)th...

    Text Solution

    |

  13. What is the simplified value of (sqrt(sec^(2)theta+cosec^(2)theta))/(...

    Text Solution

    |

  14. If (x-xtan^(2)15^(@))/(1+tan^(2)15^(@))=sin60^(@)+cos30^(@), then wh...

    Text Solution

    |

  15. What is the simplified value of (2sin^(3)theta-sintheta)/(costhet...

    Text Solution

    |

  16. If tanthetatan5theta=1 , then what is the value of sin2theta ?

    Text Solution

    |

  17. If cosec^(2)theta=(25)/(16)and theta is acute then what is the val...

    Text Solution

    |

  18. If (cosec^(2)theta-1)=(144)/(25)andtheta is acute , then what is t...

    Text Solution

    |

  19. If tantheta=sqrt((1)/(13))and theta is acute , then what is the val...

    Text Solution

    |

  20. If (sin^(2)theta)/(1+cos^(2)theta)+(sin^(2)theta)/(1-cos^(2)theta)=(8...

    Text Solution

    |