Home
Class 14
MATHS
What is the value of (tan^(2)25^(@))/(c...

What is the value of `(tan^(2)25^(@))/(cosec^(2)65^(@))+(cot^(2)25^(@))/(sec^(2)65^(@))+tan20^(@)45^(@)tan70^(@)` ?

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\tan^2 25^\circ}{\csc^2 65^\circ} + \frac{\cot^2 25^\circ}{\sec^2 65^\circ} + \tan 20^\circ \tan 45^\circ \tan 70^\circ, \] we will break it down step by step. ### Step 1: Simplify the first term We know that \(\csc^2 65^\circ = \frac{1}{\sin^2 65^\circ}\). Since \(65^\circ\) is complementary to \(25^\circ\) (i.e., \(25^\circ + 65^\circ = 90^\circ\)), we can use the identity \(\sin 65^\circ = \cos 25^\circ\). Thus, \[ \csc^2 65^\circ = \frac{1}{\sin^2 65^\circ} = \frac{1}{\cos^2 25^\circ}. \] Now substituting this into the first term: \[ \frac{\tan^2 25^\circ}{\csc^2 65^\circ} = \tan^2 25^\circ \cdot \cos^2 25^\circ. \] Using the identity \(\tan^2 x = \frac{\sin^2 x}{\cos^2 x}\), we have: \[ \tan^2 25^\circ = \frac{\sin^2 25^\circ}{\cos^2 25^\circ}. \] Thus, \[ \frac{\tan^2 25^\circ}{\csc^2 65^\circ} = \frac{\sin^2 25^\circ}{\cos^2 25^\circ} \cdot \cos^2 25^\circ = \sin^2 25^\circ. \] ### Step 2: Simplify the second term For the second term, we know that \(\sec^2 65^\circ = \frac{1}{\cos^2 65^\circ}\). Again, using the complementary angle identity, \(\cos 65^\circ = \sin 25^\circ\), we have: \[ \sec^2 65^\circ = \frac{1}{\sin^2 25^\circ}. \] Thus, \[ \frac{\cot^2 25^\circ}{\sec^2 65^\circ} = \cot^2 25^\circ \cdot \sin^2 25^\circ. \] Using the identity \(\cot^2 x = \frac{\cos^2 x}{\sin^2 x}\): \[ \cot^2 25^\circ = \frac{\cos^2 25^\circ}{\sin^2 25^\circ}. \] So we have: \[ \frac{\cot^2 25^\circ}{\sec^2 65^\circ} = \frac{\cos^2 25^\circ}{\sin^2 25^\circ} \cdot \sin^2 25^\circ = \cos^2 25^\circ. \] ### Step 3: Simplify the third term Now, we simplify the third term: \[ \tan 20^\circ \tan 45^\circ \tan 70^\circ. \] Since \(\tan 45^\circ = 1\), we have: \[ \tan 20^\circ \tan 45^\circ \tan 70^\circ = \tan 20^\circ \cdot 1 \cdot \tan 70^\circ = \tan 20^\circ \tan 70^\circ. \] Using the identity \(\tan(90^\circ - x) = \cot x\), we have \(\tan 70^\circ = \cot 20^\circ\). Thus: \[ \tan 20^\circ \tan 70^\circ = \tan 20^\circ \cdot \cot 20^\circ = 1. \] ### Step 4: Combine all terms Now we can combine all the simplified terms: \[ \sin^2 25^\circ + \cos^2 25^\circ + 1. \] Using the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\): \[ \sin^2 25^\circ + \cos^2 25^\circ = 1. \] Thus, we have: \[ 1 + 1 = 2. \] ### Final Answer The value of the expression is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -III|90 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TYPE -IV|22 Videos
  • TRIGONOMETRY

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos
  • TIME AND WORK

    KIRAN PUBLICATION|Exercise TEST YOURSELF|25 Videos

Similar Questions

Explore conceptually related problems

What is the value of ( tan^(2) 25^(@) )/( cosec^(2) 65^(@) ) + ( cot^(2) 25^(@) ) /( sec^(2) 65^(@) ) + 2 tan 20^(@) tan 45^(@) tan 70^(@)?

(tan65^(@))/(cot25^(@))

Find the value of (tan25^(@))/(cot65^(@)) .

Find the value of (tan25^(@))/(cot65^(@)) .

Find tan^(2)25^(@)-cot^(2)65^(@)

Find the value of ((tan20^(@))/(cos e)c70^(@))^(2)+((cot20^(@))/(sec70^(@)))^(2)+2tan75^(@)tan45^(@)tan15^(@)

What is the value of "cosec"^(2) 68^(@) + sec^(2)56^(@) - cot^(2)34^(@) - tan^(2)22^(@) ?

The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)70^(@)-cosec^(2)20^(@))

The value of (sin25^(@)cos65^(@)+cos25^(@)sin65^(@))/(tan^(2)27^(@)-cos ec^(2)20^(@))

Find the value of (sin25^(@))/(cos65^(@))+(tan23^(@))/(cot67^(@))

KIRAN PUBLICATION-TRIGONOMETRY -TYPE - II
  1. If (costheta)/(1+sintheta)+(coshtheta)/(1-sintheta)=4andtheta is acu...

    Text Solution

    |

  2. If (1)/(sintheta+cosectheta)=(1)/(2) , then what is the value of s...

    Text Solution

    |

  3. What is the value of (tan^(2)25^(@))/(cosec^(2)65^(@))+(cot^(2)25^(@)...

    Text Solution

    |

  4. If cosectheta+cosec^(2)theta=1 , then what is the value of (cot^(...

    Text Solution

    |

  5. If 2cos^(2)theta-1=0andtheta is acute then what is the value of (...

    Text Solution

    |

  6. If (1)/(costheta+sectheta)=(1)/(2) , what is the value of cos^(100)th...

    Text Solution

    |

  7. What is the simplified value of 1+cotAcot((A)/(2))?

    Text Solution

    |

  8. What is the simplified value of (3)/(cosec^(2)theta)+(5)/(1+tan^(2)th...

    Text Solution

    |

  9. What is the simplified value of (sqrt(sec^(2)theta+cosec^(2)theta))/(...

    Text Solution

    |

  10. If (x-xtan^(2)15^(@))/(1+tan^(2)15^(@))=sin60^(@)+cos30^(@), then wh...

    Text Solution

    |

  11. What is the simplified value of (2sin^(3)theta-sintheta)/(costhet...

    Text Solution

    |

  12. If tanthetatan5theta=1 , then what is the value of sin2theta ?

    Text Solution

    |

  13. If cosec^(2)theta=(25)/(16)and theta is acute then what is the val...

    Text Solution

    |

  14. If (cosec^(2)theta-1)=(144)/(25)andtheta is acute , then what is t...

    Text Solution

    |

  15. If tantheta=sqrt((1)/(13))and theta is acute , then what is the val...

    Text Solution

    |

  16. If (sin^(2)theta)/(1+cos^(2)theta)+(sin^(2)theta)/(1-cos^(2)theta)=(8...

    Text Solution

    |

  17. If sec^(2)theta-sectheta=1 , then what is the value of (tan^(12)th...

    Text Solution

    |

  18. What is the value of (sectheta)/(tantheta+cottheta)?

    Text Solution

    |

  19. What is the value of sin8theta+sin6theta ?

    Text Solution

    |

  20. What is the value of (cotx)/(1-tanx)+(tanx)/(1-cotx) ?

    Text Solution

    |