Home
Class 14
MATHS
(49)^(2) xx (7)^(8) div (343)^(3) = (7)^...

`(49)^(2) xx (7)^(8) div (343)^(3) = (7)^(?)`

A

3

B

13

C

7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (49)^2 \times (7)^8 \div (343)^3 = (7)^{?} \), we will follow these steps: ### Step 1: Rewrite the numbers in terms of base 7 First, we need to express all the numbers in the equation using base 7. - \( 49 \) can be rewritten as \( 7^2 \). - \( 343 \) can be rewritten as \( 7^3 \). So, we can rewrite the expression as: \[ (7^2)^2 \times (7^8) \div (7^3)^3 \] ### Step 2: Simplify the expression Now, we simplify each part of the expression: - \( (7^2)^2 = 7^{2 \times 2} = 7^4 \) - \( (7^3)^3 = 7^{3 \times 3} = 7^9 \) Now, substituting these back into the expression gives: \[ 7^4 \times 7^8 \div 7^9 \] ### Step 3: Combine the powers Next, we combine the powers in the numerator: \[ 7^4 \times 7^8 = 7^{4 + 8} = 7^{12} \] Now, we have: \[ \frac{7^{12}}{7^9} \] ### Step 4: Apply the division rule for exponents When dividing powers with the same base, we subtract the exponents: \[ 7^{12 - 9} = 7^3 \] ### Step 5: Set the equation equal to \( 7^{?} \) Now we can equate the expression to \( 7^{?} \): \[ 7^3 = 7^{?} \] ### Step 6: Solve for the question mark From the equation above, we can see that: \[ ? = 3 \] Thus, the value of the question mark is \( 3 \). ### Final Answer: \[ ? = 3 \] ---
Promotional Banner

Topper's Solved these Questions

  • TEST - 1

    MAHENDRA|Exercise MULTIPLE CHOICE QUESTIONS |50 Videos
  • TEST - 2

    MAHENDRA|Exercise MULTIPLE CHOICE QUESTIONS |44 Videos

Similar Questions

Explore conceptually related problems

The value of (3)/(5) xx 1 (7)/(8) div 1 (1)/(3) of (3)/( 16) - ( 3 (1)/(5) div 4 (1)/(2)" of" 5 (1)/(3) ) xx 2 (1)/(2) + (1)/(2) + (1)/(8) div (1)/(4)

Find (4)/(7) xx (14)/(3) div (2)/(3)

(0.49)^(4)xx(0.343)^(4) div (0.2401)^(4)=(70div100)^(?+3)

(3)/(7)xx(9)/(14) div (5)/(7)=?

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =

Find the value of ((243)^(0.13) xx (243)^(0.07))/((7)^(0.25) xx (49)^(0.075) xx (343)^(0.2))

Simplify : [ ((- 3 )/( 2) xx (4)/(5) ) + ((9)/(5) xx (-10)/( 3)) - ((1)/(2)xx (3)/(4)) ] div [ ((21)/( 9) xx (3)/(7)) +((7)/(8) xx (16)/(14)) ]

7^( 8.9)div(343)^(1.7)xx(49)^(4.8)=7^(?)

? div 36 = (7)^(2)-8