Home
Class 14
MATHS
Express ((4+sqrt15)^(3//2)+(4-sqrt15)^(3...

Express `((4+sqrt15)^(3//2)+(4-sqrt15)^(3//2))/((6+sqrt35)^(3//2)-(6-sqrt35)^(3//2))` in rational form.

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression \(\frac{(4+\sqrt{15})^{3/2}+(4-\sqrt{15})^{3/2}}{(6+\sqrt{35})^{3/2}-(6-\sqrt{35})^{3/2}}\) in rational form, we will follow these steps: ### Step 1: Simplify the Numerator The numerator is \((4+\sqrt{15})^{3/2} + (4-\sqrt{15})^{3/2}\). We can use the identity for the sum of cubes: \[ A^3 + B^3 = (A + B)(A^2 - AB + B^2) \] Let \(A = (4+\sqrt{15})^{1/2}\) and \(B = (4-\sqrt{15})^{1/2}\). Then we have: \[ A^3 + B^3 = (A + B)((A^2 + B^2) - AB) \] ### Step 2: Calculate \(A + B\) \[ A + B = (4+\sqrt{15})^{1/2} + (4-\sqrt{15})^{1/2} \] This can be simplified by rationalizing: \[ A + B = \sqrt{4+\sqrt{15}} + \sqrt{4-\sqrt{15}} \] ### Step 3: Calculate \(A^2 + B^2\) \[ A^2 + B^2 = (4+\sqrt{15}) + (4-\sqrt{15}) = 8 \] ### Step 4: Calculate \(AB\) \[ AB = \sqrt{(4+\sqrt{15})(4-\sqrt{15})} = \sqrt{16 - 15} = \sqrt{1} = 1 \] ### Step 5: Substitute Back into the Numerator Now substituting back: \[ A^3 + B^3 = (A + B)(A^2 + B^2 - AB) = (A + B)(8 - 1) = (A + B)(7) \] Thus, the numerator simplifies to: \[ 7(A + B) \] ### Step 6: Simplify the Denominator The denominator is \((6+\sqrt{35})^{3/2} - (6-\sqrt{35})^{3/2}\). We can use the identity for the difference of cubes: \[ A^3 - B^3 = (A - B)(A^2 + AB + B^2) \] Let \(A = (6+\sqrt{35})^{1/2}\) and \(B = (6-\sqrt{35})^{1/2}\). ### Step 7: Calculate \(A - B\) \[ A - B = (6+\sqrt{35})^{1/2} - (6-\sqrt{35})^{1/2} \] ### Step 8: Calculate \(A^2 + B^2\) and \(AB\) \[ A^2 + B^2 = (6+\sqrt{35}) + (6-\sqrt{35}) = 12 \] \[ AB = \sqrt{(6+\sqrt{35})(6-\sqrt{35})} = \sqrt{36 - 35} = \sqrt{1} = 1 \] ### Step 9: Substitute Back into the Denominator Now substituting back: \[ A^3 - B^3 = (A - B)(A^2 + AB + B^2) = (A - B)(12 + 1) = (A - B)(13) \] Thus, the denominator simplifies to: \[ 13(A - B) \] ### Step 10: Final Expression Now we can write the entire expression as: \[ \frac{7(A + B)}{13(A - B)} \] ### Step 11: Rational Form Thus, the expression in rational form is: \[ \frac{7 \left( (4+\sqrt{15})^{1/2} + (4-\sqrt{15})^{1/2} \right)}{13 \left( (6+\sqrt{35})^{1/2} - (6-\sqrt{35})^{1/2} \right)} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2A|44 Videos
  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2B|14 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

Simplify the following to a rational number ([4+sqrt(15)]^(3//2)+[4-sqrt(15)]^(3//2))/([6+sqrt((35))]^(3//2)-[6-sqrt((35))]^(3//2))

If(4+sqrt(15))^((3)/(2))-(4-sqrt(15))^((3)/(2))=k sqrt(6), then k is

Express (2sqrt(2)+3sqrt(3))/(2-sqrt(2)+sqrt(3)) with rational denominator.

(3sqrt(2)-sqrt(3))(4sqrt(3)-sqrt(2))

Show that the square to (sqrt(26-15sqrt(3)))/(5sqrt(2)-sqrt(38+5sqrt(3))) is a rational number.

(sqrt(15)+sqrt(35)+sqrt(21)+5)/(sqrt(3)+2sqrt(5)+sqrt(7))=?

Express (3)/(sqrt(3) - sqrt(2) + sqrt(5)) with rational denominator.

(3-sqrt(6))/(3+2sqrt(6))=a sqrt(6)-b

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

4^(5log_(4)(sqrt(2)(3-sqrt(6)))-6log_(8)(sqrt(3)-sqrt(2)))