Home
Class 14
MATHS
If x = 1/(2+sqrt3) , y =1/(2-sqrt3) , th...

If `x = 1/(2+sqrt3) , y =1/(2-sqrt3)` , then the value of `1/(x+1) +1/(y+1)` is

A

`1/2`

B

`sqrt3`

C

1

D

`1/sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{x+1} + \frac{1}{y+1} \) given \( x = \frac{1}{2+\sqrt{3}} \) and \( y = \frac{1}{2-\sqrt{3}} \). ### Step 1: Rationalize \( x \) and \( y \) First, we will rationalize \( x \) and \( y \). **For \( x \)**: \[ x = \frac{1}{2+\sqrt{3}} \cdot \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})} \] Calculating the denominator: \[ (2+\sqrt{3})(2-\sqrt{3}) = 4 - 3 = 1 \] Thus, \[ x = 2 - \sqrt{3} \] **For \( y \)**: \[ y = \frac{1}{2-\sqrt{3}} \cdot \frac{2+\sqrt{3}}{2+\sqrt{3}} = \frac{2+\sqrt{3}}{(2-\sqrt{3})(2+\sqrt{3})} \] Calculating the denominator: \[ (2-\sqrt{3})(2+\sqrt{3}) = 4 - 3 = 1 \] Thus, \[ y = 2 + \sqrt{3} \] ### Step 2: Calculate \( x + 1 \) and \( y + 1 \) Now we can find \( x + 1 \) and \( y + 1 \): \[ x + 1 = (2 - \sqrt{3}) + 1 = 3 - \sqrt{3} \] \[ y + 1 = (2 + \sqrt{3}) + 1 = 3 + \sqrt{3} \] ### Step 3: Calculate \( \frac{1}{x+1} \) and \( \frac{1}{y+1} \) Next, we compute \( \frac{1}{x+1} \) and \( \frac{1}{y+1} \): \[ \frac{1}{x+1} = \frac{1}{3 - \sqrt{3}} \cdot \frac{3 + \sqrt{3}}{3 + \sqrt{3}} = \frac{3 + \sqrt{3}}{(3 - \sqrt{3})(3 + \sqrt{3})} \] Calculating the denominator: \[ (3 - \sqrt{3})(3 + \sqrt{3}) = 9 - 3 = 6 \] Thus, \[ \frac{1}{x+1} = \frac{3 + \sqrt{3}}{6} \] Similarly for \( y \): \[ \frac{1}{y+1} = \frac{1}{3 + \sqrt{3}} \cdot \frac{3 - \sqrt{3}}{3 - \sqrt{3}} = \frac{3 - \sqrt{3}}{(3 + \sqrt{3})(3 - \sqrt{3})} \] Calculating the denominator: \[ (3 + \sqrt{3})(3 - \sqrt{3}) = 9 - 3 = 6 \] Thus, \[ \frac{1}{y+1} = \frac{3 - \sqrt{3}}{6} \] ### Step 4: Combine \( \frac{1}{x+1} + \frac{1}{y+1} \) Now we can add these two fractions: \[ \frac{1}{x+1} + \frac{1}{y+1} = \frac{3 + \sqrt{3}}{6} + \frac{3 - \sqrt{3}}{6} = \frac{(3 + \sqrt{3}) + (3 - \sqrt{3})}{6} = \frac{6}{6} = 1 \] ### Final Answer Thus, the value of \( \frac{1}{x+1} + \frac{1}{y+1} \) is \( \boxed{1} \).
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2A|44 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

If x = 7 + 4 sqrt(3) , y = 7 - 4 sqrt(3) , find the value of (1)/(x^(2)) + (1)/(y^(2)) .

If x = 2+ sqrt3, y = 2- sqrt3 and z = 1, then what is the value of (x//yz) + (y//xz) + (z//xy) + 2[(1//x)+ (1//y) + (1//z)] ?

If x =1 + sqrt2 + sqrt3 and y =1 + sqrt2 - sqrt3, then the value of (x ^(2) + 4xy + y ^(2))/(x + y) is: