Home
Class 14
MATHS
If x = 2 +sqrt3, y = 2 - sqrt3 then the ...

If `x = 2 +sqrt3, y = 2 - sqrt3` then the value `(x^2+y^2)/(x^3+y^3)` is

A

`7/38`

B

`7/40`

C

`7/18

D

`7/26`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{x^2 + y^2}{x^3 + y^3}\) where \(x = 2 + \sqrt{3}\) and \(y = 2 - \sqrt{3}\). ### Step 1: Calculate \(x + y\) and \(xy\) First, we find \(x + y\) and \(xy\): \[ x + y = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4 \] \[ xy = (2 + \sqrt{3})(2 - \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] ### Step 2: Calculate \(x^2 + y^2\) Using the identity \(x^2 + y^2 = (x + y)^2 - 2xy\): \[ x^2 + y^2 = (4)^2 - 2(1) = 16 - 2 = 14 \] ### Step 3: Calculate \(x^3 + y^3\) Using the identity \(x^3 + y^3 = (x + y)(x^2 - xy + y^2)\): First, we need \(x^2 - xy + y^2\): \[ x^2 - xy + y^2 = (x^2 + y^2) - xy = 14 - 1 = 13 \] Now we can calculate \(x^3 + y^3\): \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) = 4 \cdot 13 = 52 \] ### Step 4: Calculate \(\frac{x^2 + y^2}{x^3 + y^3}\) Now we can find the value of \(\frac{x^2 + y^2}{x^3 + y^3}\): \[ \frac{x^2 + y^2}{x^3 + y^3} = \frac{14}{52} = \frac{7}{26} \] ### Final Answer Thus, the value of \(\frac{x^2 + y^2}{x^3 + y^3}\) is \(\frac{7}{26}\). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2A|44 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

If x = (1)/(2 + sqrt3) , y = (1)/(2 - sqrt3) then the value of (1)/(x + 1) + (1)/(y +1) is :

If x = 2 + sqrt(3) and y = 2 - sqrt(3) , find the value of x^(-3) + y^(-3) .

If x =1 + sqrt2 + sqrt3 and y =1 + sqrt2 - sqrt3, then the value of (x ^(2) + 4xy + y ^(2))/(x + y) is:

If x = 2 + sqrt(3) and y = 2 - sqrt(3) , find the value of x^(-2) + y^(-2) .

If x = 1/(2+sqrt3) , y =1/(2-sqrt3) , then the value of 1/(x+1) +1/(y+1) is

If x = 2+ sqrt3, y = 2- sqrt3 and z = 1, then what is the value of (x//yz) + (y//xz) + (z//xy) + 2[(1//x)+ (1//y) + (1//z)] ?