Home
Class 14
MATHS
If a= (sqrt3 - sqrt2)/(sqrt3 + sqrt2), b...

If `a= (sqrt3 - sqrt2)/(sqrt3 + sqrt2), b = (sqrt3 + sqrt2)/(sqrt3 - sqrt2)` then what is the value of `a^2/b+b^2/a` ?

A

970

B

1030

C

930

D

900

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{a^2}{b} + \frac{b^2}{a} \) given: \[ a = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}, \quad b = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}. \] ### Step 1: Rationalize \( a \) To rationalize \( a \), we multiply the numerator and denominator by the conjugate of the denominator: \[ a = \frac{(\sqrt{3} - \sqrt{2})(\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})}. \] Calculating the denominator: \[ (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 3 - 2 = 1. \] Calculating the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6}. \] Thus, \[ a = 5 - 2\sqrt{6}. \] ### Step 2: Rationalize \( b \) Similarly, we rationalize \( b \): \[ b = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})}. \] Calculating the denominator: \[ (\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2}) = 3 - 2 = 1. \] Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6}. \] Thus, \[ b = 5 + 2\sqrt{6}. \] ### Step 3: Calculate \( a^2 \) and \( b^2 \) Now we calculate \( a^2 \) and \( b^2 \): \[ a^2 = (5 - 2\sqrt{6})^2 = 25 - 20\sqrt{6} + 24 = 49 - 20\sqrt{6}, \] \[ b^2 = (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6}. \] ### Step 4: Calculate \( a^2/b + b^2/a \) Now we need to find: \[ \frac{a^2}{b} + \frac{b^2}{a}. \] Finding a common denominator: \[ \frac{a^2}{b} + \frac{b^2}{a} = \frac{a^3 + b^3}{ab}. \] ### Step 5: Calculate \( ab \) Calculating \( ab \): \[ ab = (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 25 - (2\sqrt{6})^2 = 25 - 24 = 1. \] ### Step 6: Calculate \( a^3 + b^3 \) Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): First, find \( a + b \): \[ a + b = (5 - 2\sqrt{6}) + (5 + 2\sqrt{6}) = 10. \] Now find \( a^2 + b^2 \): \[ a^2 + b^2 = (49 - 20\sqrt{6}) + (49 + 20\sqrt{6}) = 98. \] Now substitute into \( a^3 + b^3 \): \[ a^3 + b^3 = (10)(98 - 1) = 10 \times 97 = 970. \] ### Step 7: Final Calculation Now we can substitute back: \[ \frac{a^3 + b^3}{ab} = \frac{970}{1} = 970. \] Thus, the value of \( \frac{a^2}{b} + \frac{b^2}{a} \) is: \[ \boxed{970}. \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2A|44 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

(2sqrt3 + sqrt2)(2sqrt3-sqrt2)

If a=(sqrt3+ sqrt2)/(sqrt3- sqrt2) and b=(sqrt3- sqrt2)/(sqrt3+sqrt2) , then what is the value of a^2+b^2-ab ?

[(sqrt3 + sqrt2 )/(sqrt3 - sqrt2) - (sqrt3 - sqrt2)/(sqrt3 + sqrt2)] simplifies to

If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) then value of sqrt(3a^2 - 5ab + 3b^2) is

if a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)),b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2))

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of a+b is

If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) , then value of a^(2) + b^(2) is