Home
Class 14
MATHS
If x = 2 + sqrt3 then the value of sqrtx...

If `x = 2 + sqrt3` then the value of `sqrtx + 1/sqrtx` is

A

`sqrt6`

B

`2sqrt6`

C

6

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) given \( x = 2 + \sqrt{3} \). ### Step-by-Step Solution: 1. **Substituting the value of \( x \)**: We know that \( x = 2 + \sqrt{3} \). We need to find \( \sqrt{x} + \frac{1}{\sqrt{x}} \). 2. **Let \( y = \sqrt{x} + \frac{1}{\sqrt{x}} \)**: We will square both sides to simplify our calculations: \[ y^2 = \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 \] 3. **Expanding the square**: Using the formula \( (a + b)^2 = a^2 + b^2 + 2ab \): \[ y^2 = x + \frac{1}{x} + 2 \] 4. **Finding \( x + \frac{1}{x} \)**: We first need to calculate \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{2 + \sqrt{3}} \] To rationalize the denominator, multiply the numerator and denominator by the conjugate \( 2 - \sqrt{3} \): \[ \frac{1}{2 + \sqrt{3}} \cdot \frac{2 - \sqrt{3}}{2 - \sqrt{3}} = \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})} \] The denominator simplifies to: \[ 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Thus, \( \frac{1}{x} = 2 - \sqrt{3} \). 5. **Calculating \( x + \frac{1}{x} \)**: Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4 \] 6. **Substituting back into the equation for \( y^2 \)**: Now substitute \( x + \frac{1}{x} \) back into the equation for \( y^2 \): \[ y^2 = 4 + 2 = 6 \] 7. **Finding \( y \)**: Taking the square root of both sides: \[ y = \sqrt{6} \] ### Final Answer: Thus, the value of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) is \( \sqrt{6} \).
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2A|44 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

If x=3+2 sqrt2 , then the value of sqrtx-1/sqrtx is : यदि x=3+2 sqrt2 , तब sqrtx-1/sqrtx का मान :

If x = 1 + sqrt2 , then find the value of sqrtx+(1/sqrtx) . यदि x = 1 + sqrt2 , है, तो sqrtx+(1/sqrtx) का मान ज्ञात कीजिए ?

If x = 3 + 2 sqrt2 , find the value sqrtx - (1)/(sqrtx)

If x = 5+2sqrt6 , then the value of (sqrtx +frac(1)(sqrtx)) is (A) 2sqrt2 (B) 3sqrt2 (C ) 2sqrt3 (D) 3sqrt3

If (3(x^2 +1)-7x)/3x =6, x ≠ 0 , then the value of sqrtx + 1/(sqrtx) is: यदि (3(x^2 +1)-7x)/3x =6, x ≠ 0 , है, तो sqrtx + 1/(sqrtx) का मान क्या होगा?