Home
Class 14
MATHS
If sqrt(4x-9) + sqrt(4x +9) = 5 +sqrt7 t...

If `sqrt(4x-9) + sqrt(4x +9) = 5 +sqrt7` then what is the value of x ?

A

5

B

7

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\sqrt{4x-9} + \sqrt{4x+9} = 5 + \sqrt{7}\), we will follow these steps: ### Step 1: Square both sides We start by squaring both sides of the equation to eliminate the square roots. \[ (\sqrt{4x-9} + \sqrt{4x+9})^2 = (5 + \sqrt{7})^2 \] ### Step 2: Expand both sides Now we expand both sides: Left-hand side: \[ (\sqrt{4x-9})^2 + 2\sqrt{(4x-9)(4x+9)} + (\sqrt{4x+9})^2 = (4x - 9) + (4x + 9) + 2\sqrt{(4x-9)(4x+9)} \] \[ = 8x + 2\sqrt{(4x-9)(4x+9)} \] Right-hand side: \[ (5 + \sqrt{7})^2 = 25 + 2 \cdot 5 \cdot \sqrt{7} + 7 = 32 + 10\sqrt{7} \] ### Step 3: Set the equation Now we have: \[ 8x + 2\sqrt{(4x-9)(4x+9)} = 32 + 10\sqrt{7} \] ### Step 4: Isolate the square root term Next, we isolate the square root term: \[ 2\sqrt{(4x-9)(4x+9)} = 32 + 10\sqrt{7} - 8x \] ### Step 5: Divide by 2 Now, divide everything by 2: \[ \sqrt{(4x-9)(4x+9)} = 16 + 5\sqrt{7} - 4x \] ### Step 6: Square both sides again Square both sides again to eliminate the square root: \[ (4x-9)(4x+9) = (16 + 5\sqrt{7} - 4x)^2 \] ### Step 7: Expand both sides Left-hand side: \[ (4x-9)(4x+9) = 16x^2 - 81 \] Right-hand side: \[ (16 + 5\sqrt{7} - 4x)^2 = (16 - 4x)^2 + 2(16 - 4x)(5\sqrt{7}) + (5\sqrt{7})^2 \] \[ = (16 - 4x)^2 + 2(16)(5\sqrt{7}) - 8x(5\sqrt{7}) + 175 \] ### Step 8: Combine terms Now combine and simplify the right-hand side: \[ = 256 - 128x + 16x^2 + 175 + 160\sqrt{7} - 40x\sqrt{7} \] \[ = 16x^2 - 128x + 431 + 160\sqrt{7} - 40x\sqrt{7} \] ### Step 9: Set the equation Now we set both sides equal: \[ 16x^2 - 81 = 16x^2 - 128x + 431 + 160\sqrt{7} - 40x\sqrt{7} \] ### Step 10: Simplify and solve for x Now, we can cancel \(16x^2\) from both sides: \[ -81 = -128x + 431 + 160\sqrt{7} - 40x\sqrt{7} \] Rearranging gives: \[ 128x = 431 + 81 + 160\sqrt{7} - 40x\sqrt{7} \] \[ 128x = 512 + 160\sqrt{7} - 40x\sqrt{7} \] Combining terms gives: \[ (128 + 40\sqrt{7})x = 512 + 160\sqrt{7} \] Now, divide by \((128 + 40\sqrt{7})\): \[ x = \frac{512 + 160\sqrt{7}}{128 + 40\sqrt{7}} \] ### Step 11: Simplify x This can be simplified further, but it requires rationalizing the denominator or substituting numerical values for \(\sqrt{7}\). ### Final Result After simplification, we find: \[ x = 4 \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    LUCENT PUBLICATION|Exercise Exercise - 2A|44 Videos
  • HEIGHT AND DISTANCE

    LUCENT PUBLICATION|Exercise EXERCISE-12B|14 Videos
  • LINES AND ANGLES

    LUCENT PUBLICATION|Exercise EXERCISE 4B|5 Videos

Similar Questions

Explore conceptually related problems

If sqrt(4 x - 9) + sqrt(4 x + 9) = 5 + sqrt7 then the value of x is :

If (sqrt(5 + x) + sqrt(5 - x))/(sqrt(5 + x) - sqrt(5 - x)) = 3 , then what is the value of x ?

If sqrt(3x - 7) + sqrt(3x + 7) = 4 + sqrt(2) then value of x + 1/x is

If x=sqrt((2+sqrt(3))/(2-sqrt(3))) ,then what is the value of (x^(2)+x-9) ?