Home
Class 14
MATHS
If x ="cosec"theta - sin theta and y=sec...

If `x ="cosec"theta - sin theta` and `y=sectheta - costheta`, then the value of `x^(2)y^(2)(x^(2) + y^(2) + 3)` is:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 y^2 (x^2 + y^2 + 3) \) given: \[ x = \csc \theta - \sin \theta \] \[ y = \sec \theta - \cos \theta \] ### Step 1: Simplifying \( x \) We know that: \[ \csc \theta = \frac{1}{\sin \theta} \] Thus, we can rewrite \( x \): \[ x = \frac{1}{\sin \theta} - \sin \theta \] To combine these terms, we need a common denominator: \[ x = \frac{1 - \sin^2 \theta}{\sin \theta} \] Using the identity \( 1 - \sin^2 \theta = \cos^2 \theta \): \[ x = \frac{\cos^2 \theta}{\sin \theta} = \cot \theta \cdot \cos \theta \] ### Step 2: Simplifying \( y \) Similarly, for \( y \): \[ \sec \theta = \frac{1}{\cos \theta} \] So we can rewrite \( y \): \[ y = \frac{1}{\cos \theta} - \cos \theta \] Again, we need a common denominator: \[ y = \frac{1 - \cos^2 \theta}{\cos \theta} \] Using the identity \( 1 - \cos^2 \theta = \sin^2 \theta \): \[ y = \frac{\sin^2 \theta}{\cos \theta} = \tan \theta \cdot \sin \theta \] ### Step 3: Finding \( x^2 \) and \( y^2 \) Now we can find \( x^2 \) and \( y^2 \): \[ x^2 = \left( \frac{\cos^2 \theta}{\sin \theta} \right)^2 = \frac{\cos^4 \theta}{\sin^2 \theta} \] \[ y^2 = \left( \frac{\sin^2 \theta}{\cos \theta} \right)^2 = \frac{\sin^4 \theta}{\cos^2 \theta} \] ### Step 4: Finding \( x^2 + y^2 \) Now we can find \( x^2 + y^2 \): \[ x^2 + y^2 = \frac{\cos^4 \theta}{\sin^2 \theta} + \frac{\sin^4 \theta}{\cos^2 \theta} \] To combine these, we need a common denominator: \[ x^2 + y^2 = \frac{\cos^4 \theta \cdot \cos^2 \theta + \sin^4 \theta \cdot \sin^2 \theta}{\sin^2 \theta \cos^2 \theta} \] This simplifies to: \[ x^2 + y^2 = \frac{\cos^6 \theta + \sin^6 \theta}{\sin^2 \theta \cos^2 \theta} \] ### Step 5: Finding \( x^2 y^2 \) Next, we find \( x^2 y^2 \): \[ x^2 y^2 = \left( \frac{\cos^4 \theta}{\sin^2 \theta} \right) \left( \frac{\sin^4 \theta}{\cos^2 \theta} \right) = \frac{\cos^4 \theta \sin^4 \theta}{\sin^2 \theta \cos^2 \theta} = \cos^2 \theta \sin^2 \theta \] ### Step 6: Finding \( x^2 y^2 (x^2 + y^2 + 3) \) Now we can substitute \( x^2 \), \( y^2 \), and \( 3 \) into the expression: \[ x^2 + y^2 + 3 = \frac{\cos^6 \theta + \sin^6 \theta}{\sin^2 \theta \cos^2 \theta} + 3 \] Thus, we have: \[ x^2 y^2 (x^2 + y^2 + 3) = \cos^2 \theta \sin^2 \theta \left( \frac{\cos^6 \theta + \sin^6 \theta + 3 \sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \right) \] This simplifies to: \[ \cos^6 \theta + \sin^6 \theta + 3 \sin^2 \theta \cos^2 \theta \] ### Final Step: Conclusion The final expression is: \[ \cos^6 \theta + \sin^6 \theta + 3 \sin^2 \theta \cos^2 \theta \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11A|76 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If x=cosec theta-sin theta and y=sec theta-cos theta then prove that x^(2/3)+y^(2/3)=(xy)^(-2/3)

If x="cosec"theta-sinthetaandy=sectheta-costheta , then the relationbetween x and y is

If x=a cos theta - b sin theta , and y=a sin theta+b cos theta , what is the value of (x^2+y^2)/(a^2+b^2) ?

If x=a sin theta and y = b cos theta , " write the value of " (b^(2)x^(2)+a^(2)y^(2)).

If x=a cos theta-b sin theta and y=a sin theta+b cos theta then prove that :x^(2)+y^(2)=a^(2)+b^(2)

If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then x ^(2) +4y^(2)=

If x=a sin theta and y=b cos theta, what is the value of b^(2)x^(2)+a^(2)y^(2)?

If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11B
  1. If costheta+sectheta=sqrt(3) , then the value of (cos^(3)theta+sec...

    Text Solution

    |

  2. If 2ycos theta =x sin theta and 2x sectheta -y "cosec"theta =3, then t...

    Text Solution

    |

  3. If sectheta + tan theta = sqrt(3), then the positive value of sin thet...

    Text Solution

    |

  4. If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (c...

    Text Solution

    |

  5. (Sin theta -Cos theta +1)/(Sin theta+Cos theta -1)= ?

    Text Solution

    |

  6. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  7. Find minimum value of 4sec^(2)theta+9cos^(2)theta.

    Text Solution

    |

  8. If tan(x+y) tan(x-y)=1, then the value of tan((2x)/3)is:

    Text Solution

    |

  9. If x ="cosec"theta - sin theta and y=sectheta - costheta, then the val...

    Text Solution

    |

  10. If sin theta +sin^2 theta=1, then the value of cos^12 theta +3cos^10 t...

    Text Solution

    |

  11. If tan(x+ y)tan(x-y)=1, then the value of tan x is:

    Text Solution

    |

  12. If cotA + "cosec"A=3 and A is an acute angle then the value of cosA i...

    Text Solution

    |

  13. The simplified value of 1- (sin^(2)A)/(1+ cosA) + (1+ cosA)/(sinA) - (...

    Text Solution

    |

  14. If alpha is an acute angle and 2sinalpha+15cos^(2)alpha=7 then ...

    Text Solution

    |

  15. If tantheta - cot theta =a and cos theta - sin theta =b, then value of...

    Text Solution

    |

  16. If (a^2-b^2)sin theta+2abcos theta= a^2+b^2, then tan theta= यदि (a...

    Text Solution

    |

  17. sin^(2)21^(@) + sin^(2) 69^(@) is equal to

    Text Solution

    |

  18. sin^(2)5^(@) + sin^(2)25^(@) + sin^(2)45^(@) + sin^(2) 65^(@) + sin^(2...

    Text Solution

    |

  19. For all real values of alpha, x = cos^(4) alpha + sin^(2)alpha, then r...

    Text Solution

    |

  20. If sin^(2)alpha=cos^(2)alpha , then the value of (cot^(6)alpha-cot^(2)...

    Text Solution

    |