Home
Class 14
MATHS
If cotA + "cosec"A=3 and A is an acute ...

If `cotA + "cosec"A=3` and A is an acute angle then the value of cosA is:

A

1

B

`1/2`

C

`3/4`

D

`4/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given Equation**: \[ \cot A + \csc A = 3 \] 2. **Using Trigonometric Identity**: We know the identity: \[ \cot^2 A + 1 = \csc^2 A \] Rearranging this gives: \[ \cot^2 A = \csc^2 A - 1 \] 3. **Substituting**: From the given equation, we can express \(\csc A\) in terms of \(\cot A\): \[ \csc A = 3 - \cot A \] Now, substituting this into the identity: \[ \cot^2 A = (3 - \cot A)^2 - 1 \] 4. **Expanding the Equation**: Expanding the right-hand side: \[ \cot^2 A = (9 - 6\cot A + \cot^2 A) - 1 \] Simplifying gives: \[ \cot^2 A = 8 - 6\cot A + \cot^2 A \] 5. **Cancelling \(\cot^2 A\)**: Subtract \(\cot^2 A\) from both sides: \[ 0 = 8 - 6\cot A \] Rearranging gives: \[ 6\cot A = 8 \] Thus: \[ \cot A = \frac{8}{6} = \frac{4}{3} \] 6. **Finding Sides of the Triangle**: In a right triangle, if \(\cot A = \frac{\text{adjacent}}{\text{opposite}} = \frac{4}{3}\), we can label: - Adjacent side = 4 - Opposite side = 3 7. **Finding Hypotenuse**: Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Adjacent}^2 + \text{Opposite}^2 \] \[ \text{Hypotenuse}^2 = 4^2 + 3^2 = 16 + 9 = 25 \] Thus: \[ \text{Hypotenuse} = \sqrt{25} = 5 \] 8. **Finding \(\cos A\)**: We know: \[ \cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{4}{5} \] 9. **Final Answer**: Therefore, the value of \(\cos A\) is: \[ \cos A = \frac{4}{5} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11A|76 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If cot A+cos ecA=3 and A is an acute angle then find the value of cos A

If sec5A="cosec"(4A-18^(@))and 5A is an acute angle , find the vlaue of A.

Knowledge Check

  • If sinA=(sqrt(3))/(2) and A is an acute angle, then find the value of (tanA-cotA)/(sqrt(3)+"cosec"A) .

    A
    `(-2)/(5)`
    B
    `(2)/(5)`
    C
    `(2)/(3+2sqrt(3))`
    D
    `-2`
  • If cos theta = (5)/(13) , theta being an acute angle then the value of (cos theta + 5 cot theta)/(cosec theta - cost theta) will be

    A
    `(169)/( 109)`
    B
    ` (155)/( 109)`
    C
    ` (385)/( 109)`
    D
    `(395)/(109)`
  • If sec 2A=cosec (A-42^@) , where 2A is an acute angle, find the value of A.

    A
    `A=44^@`
    B
    `A=54^@`
    C
    `A=64^@`
    D
    `A=74^@`
  • Similar Questions

    Explore conceptually related problems

    If sec 5A=cosec (A-30^@) , where 5A is an acute angle then find the value of A.

    If sec4A ="cosec"(A-20^@) where 4A is an acute angle , find the value of A.

    If A sec 4A = "cosec" (A - 20^@) , where 4A is an acute angle, then find the value of A.

    If sec 4A=cosec (A-15^@) , where 4A is an acute angle, find the value of A.

    If sin 3A = cos (A - 26^@) , where 3A is an acute angle, then find the value of A.