Home
Class 14
MATHS
sin^(2)21^(@) + sin^(2) 69^(@) is equal ...

`sin^(2)21^(@) + sin^(2) 69^(@)` is equal to

A

`2sin^(2)21^(@)`

B

`2sin^(2)69^(@)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2(21^\circ) + \sin^2(69^\circ) \), we can use the trigonometric identity that relates sine and cosine. Here are the steps: ### Step-by-Step Solution: 1. **Write the expression**: \[ \sin^2(21^\circ) + \sin^2(69^\circ) \] 2. **Use the complementary angle identity**: We know that \( \sin(90^\circ - \theta) = \cos(\theta) \). Therefore, we can express \( \sin(69^\circ) \) as: \[ \sin(69^\circ) = \sin(90^\circ - 21^\circ) = \cos(21^\circ) \] 3. **Substitute \( \sin(69^\circ) \)**: Now, we can rewrite \( \sin^2(69^\circ) \) using the identity: \[ \sin^2(69^\circ) = \cos^2(21^\circ) \] So, the expression becomes: \[ \sin^2(21^\circ) + \cos^2(21^\circ) \] 4. **Apply the Pythagorean identity**: We know from the Pythagorean identity that: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] Therefore: \[ \sin^2(21^\circ) + \cos^2(21^\circ) = 1 \] 5. **Final result**: Thus, we conclude that: \[ \sin^2(21^\circ) + \sin^2(69^\circ) = 1 \] ### Conclusion: The value of \( \sin^2(21^\circ) + \sin^2(69^\circ) \) is equal to \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11A|76 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

sin ^(2) 25^(@) + sin ^(2) 65^(@) is equal to

sin^(2)5^(@) + sin^(2)25^(@) + sin^(2)45^(@) + sin^(2) 65^(@) + sin^(2) 85^(@) is equal to:

sin^(2)24^(@)-sin^(2)6^(@) is equal to

sin^(2)17.5^(@) +sin^(2)72.5^(@) is equal to:

sin^(2)17.5^(@)+sin^(2)72.5^(@) is equal to

sin^(2)5^(@)+sin^(2)10^(@)+sin^(2)15^(@)+ .....+sin^(2)85^(@)+sin^(2)90^(@) is equal to

What is sin^(2)20^(@)+sin^(2)70^(@) equal to ?

sin^(2)(35^(@))+sin^(2)(55^@) is equal to

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11B
  1. If costheta+sectheta=sqrt(3) , then the value of (cos^(3)theta+sec...

    Text Solution

    |

  2. If 2ycos theta =x sin theta and 2x sectheta -y "cosec"theta =3, then t...

    Text Solution

    |

  3. If sectheta + tan theta = sqrt(3), then the positive value of sin thet...

    Text Solution

    |

  4. If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (c...

    Text Solution

    |

  5. (Sin theta -Cos theta +1)/(Sin theta+Cos theta -1)= ?

    Text Solution

    |

  6. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  7. Find minimum value of 4sec^(2)theta+9cos^(2)theta.

    Text Solution

    |

  8. If tan(x+y) tan(x-y)=1, then the value of tan((2x)/3)is:

    Text Solution

    |

  9. If x ="cosec"theta - sin theta and y=sectheta - costheta, then the val...

    Text Solution

    |

  10. If sin theta +sin^2 theta=1, then the value of cos^12 theta +3cos^10 t...

    Text Solution

    |

  11. If tan(x+ y)tan(x-y)=1, then the value of tan x is:

    Text Solution

    |

  12. If cotA + "cosec"A=3 and A is an acute angle then the value of cosA i...

    Text Solution

    |

  13. The simplified value of 1- (sin^(2)A)/(1+ cosA) + (1+ cosA)/(sinA) - (...

    Text Solution

    |

  14. If alpha is an acute angle and 2sinalpha+15cos^(2)alpha=7 then ...

    Text Solution

    |

  15. If tantheta - cot theta =a and cos theta - sin theta =b, then value of...

    Text Solution

    |

  16. If (a^2-b^2)sin theta+2abcos theta= a^2+b^2, then tan theta= यदि (a...

    Text Solution

    |

  17. sin^(2)21^(@) + sin^(2) 69^(@) is equal to

    Text Solution

    |

  18. sin^(2)5^(@) + sin^(2)25^(@) + sin^(2)45^(@) + sin^(2) 65^(@) + sin^(2...

    Text Solution

    |

  19. For all real values of alpha, x = cos^(4) alpha + sin^(2)alpha, then r...

    Text Solution

    |

  20. If sin^(2)alpha=cos^(2)alpha , then the value of (cot^(6)alpha-cot^(2)...

    Text Solution

    |