Home
Class 14
MATHS
For all real values of alpha, x = cos^(4...

For all real values of `alpha, x = cos^(4) alpha + sin^(2)alpha`, then range of x is:

A

`3/4 le x le 1`

B

`3/4 le x le 13/15`

C

`13/16 le x le 1`

D

`1/2 le x le 2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of \( x = \cos^4 \alpha + \sin^2 \alpha \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x = \cos^4 \alpha + \sin^2 \alpha \] We can rewrite \( \cos^4 \alpha \) as \( (\cos^2 \alpha)^2 \). Let \( y = \cos^2 \alpha \). Then, we have: \[ x = y^2 + (1 - y) \] since \( \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - y \). ### Step 2: Simplify the expression Now, we can simplify the expression: \[ x = y^2 + 1 - y \] This simplifies to: \[ x = y^2 - y + 1 \] ### Step 3: Determine the range of \( y \) Since \( y = \cos^2 \alpha \), the range of \( y \) is from \( 0 \) to \( 1 \) (i.e., \( 0 \leq y \leq 1 \)). ### Step 4: Analyze the quadratic function The expression \( x = y^2 - y + 1 \) is a quadratic function in terms of \( y \). To find the minimum and maximum values, we can analyze the vertex of the parabola. The vertex of a quadratic \( ay^2 + by + c \) is given by: \[ y = -\frac{b}{2a} \] Here, \( a = 1 \) and \( b = -1 \): \[ y = -\frac{-1}{2 \cdot 1} = \frac{1}{2} \] ### Step 5: Calculate \( x \) at the vertex Now, we substitute \( y = \frac{1}{2} \) back into the expression for \( x \): \[ x = \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) + 1 = \frac{1}{4} - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] ### Step 6: Calculate \( x \) at the endpoints Next, we evaluate \( x \) at the endpoints of the interval for \( y \): 1. When \( y = 0 \): \[ x = 0^2 - 0 + 1 = 1 \] 2. When \( y = 1 \): \[ x = 1^2 - 1 + 1 = 1 \] ### Step 7: Conclusion Thus, the minimum value of \( x \) is \( \frac{3}{4} \) (at \( y = \frac{1}{2} \)), and the maximum value of \( x \) is \( 1 \) (at \( y = 0 \) and \( y = 1 \)). Therefore, the range of \( x \) is: \[ \left[\frac{3}{4}, 1\right] \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTARY TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 11A|76 Videos
  • CONGRUENCE AND SIMILAR TRIANGLES

    LUCENT PUBLICATION|Exercise EXERCISE-5B|8 Videos
  • GRAPHICAL SOLUTION OF LINEAR EQUATION

    LUCENT PUBLICATION|Exercise EXERCISE-3B|8 Videos

Similar Questions

Explore conceptually related problems

If sin^(x)alpha+cos^(x)alpha>=1 and 0

If x=a sin alpha+b cos alpha and y=a cos alpha-b sin alpha then remove alpha

The simplified value of sin^(4)alpha+cos^(4)alpha+(1)/(2) sin^(2) 2 alpha is

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

sin3 alpha=4sin alpha sin(x+alpha)sin(x-alpha)

If minimum value of function f(x)=(1+alpha^(2))x^(2)-2 alpha x+1 is g(alpha) then range of g(alpha) is

If cos x -sin alpha cot beta sin x=cos alpha then the value of tan x/2 is

(sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

LUCENT PUBLICATION-ELEMENTARY TRIGONOMETRIC IDENTITIES -EXERCISE 11B
  1. If costheta+sectheta=sqrt(3) , then the value of (cos^(3)theta+sec...

    Text Solution

    |

  2. If 2ycos theta =x sin theta and 2x sectheta -y "cosec"theta =3, then t...

    Text Solution

    |

  3. If sectheta + tan theta = sqrt(3), then the positive value of sin thet...

    Text Solution

    |

  4. If (cos^(4)alpha)/(cos^(2)beta)+(sin^(4)alpha)/(sin^(2)beta)=1 then (c...

    Text Solution

    |

  5. (Sin theta -Cos theta +1)/(Sin theta+Cos theta -1)= ?

    Text Solution

    |

  6. If x,y are positive acute angles, x+ylt90^(@) and sin(2x-20^(@))=cos(2...

    Text Solution

    |

  7. Find minimum value of 4sec^(2)theta+9cos^(2)theta.

    Text Solution

    |

  8. If tan(x+y) tan(x-y)=1, then the value of tan((2x)/3)is:

    Text Solution

    |

  9. If x ="cosec"theta - sin theta and y=sectheta - costheta, then the val...

    Text Solution

    |

  10. If sin theta +sin^2 theta=1, then the value of cos^12 theta +3cos^10 t...

    Text Solution

    |

  11. If tan(x+ y)tan(x-y)=1, then the value of tan x is:

    Text Solution

    |

  12. If cotA + "cosec"A=3 and A is an acute angle then the value of cosA i...

    Text Solution

    |

  13. The simplified value of 1- (sin^(2)A)/(1+ cosA) + (1+ cosA)/(sinA) - (...

    Text Solution

    |

  14. If alpha is an acute angle and 2sinalpha+15cos^(2)alpha=7 then ...

    Text Solution

    |

  15. If tantheta - cot theta =a and cos theta - sin theta =b, then value of...

    Text Solution

    |

  16. If (a^2-b^2)sin theta+2abcos theta= a^2+b^2, then tan theta= यदि (a...

    Text Solution

    |

  17. sin^(2)21^(@) + sin^(2) 69^(@) is equal to

    Text Solution

    |

  18. sin^(2)5^(@) + sin^(2)25^(@) + sin^(2)45^(@) + sin^(2) 65^(@) + sin^(2...

    Text Solution

    |

  19. For all real values of alpha, x = cos^(4) alpha + sin^(2)alpha, then r...

    Text Solution

    |

  20. If sin^(2)alpha=cos^(2)alpha , then the value of (cot^(6)alpha-cot^(2)...

    Text Solution

    |