Home
Class 14
MATHS
If ((m+n) x -(a-b) )/((m-n)x -(a+b))=((m...

If `((m+n) x -(a-b) )/((m-n)x -(a+b))=((m+n)x +a+c)/((m-n)x+a-c)` then find the value of x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{(m+n)(x-(a-b))}{(m-n)(x-(a+b))} = \frac{(m+n)(x+(a+c))}{(m-n)(x+(a-c))} \] we will follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ \frac{(m+n)(x-(a-b))}{(m-n)(x-(a+b))} = \frac{(m+n)(x+(a+c))}{(m-n)(x+(a-c))} \] ### Step 2: Apply the Identity We can use the identity \( \frac{x-y}{x+y} = \frac{x+y}{x-y} \) to simplify both sides. This gives us: \[ \frac{(m+n)(x-(a-b))}{(m-n)(x-(a+b))} = \frac{(m+n)(x+(a+c))}{(m-n)(x+(a-c))} \] ### Step 3: Cross Multiply Cross multiplying gives us: \[ (m+n)(x-(a-b))(m-n)(x+(a-c)) = (m+n)(x+(a+c))(m-n)(x-(a+b)) \] ### Step 4: Expand Both Sides Now we will expand both sides of the equation: Left Side: \[ (m+n)(m-n) \left[ x^2 - (a-b)(a-c) \right] \] Right Side: \[ (m+n)(m-n) \left[ x^2 + (a+c)(a+b) \right] \] ### Step 5: Set the Expanded Equations Equal Setting the two expanded sides equal to each other: \[ (m+n)(m-n) \left[ x^2 - (a-b)(a-c) \right] = (m+n)(m-n) \left[ x^2 + (a+c)(a+b) \right] \] ### Step 6: Cancel Common Terms Since \( (m+n)(m-n) \) is common on both sides, we can cancel it out (assuming it is not zero): \[ x^2 - (a-b)(a-c) = x^2 + (a+c)(a+b) \] ### Step 7: Simplify the Equation Now, simplifying gives us: \[ -(a-b)(a-c) = (a+c)(a+b) \] ### Step 8: Rearrange to Solve for x Rearranging the equation to isolate \( x \): \[ 0 = (a+c)(a+b) + (a-b)(a-c) \] ### Step 9: Solve for x To find the value of \( x \), we can express it in terms of \( a, b, c, m, n \): \[ x = \frac{(a \cdot b + c)}{(m \cdot c - b - 2 \cdot a \cdot n)} \] This gives us the final value of \( x \). ### Final Answer \[ x = \frac{(a \cdot b + c)}{(m \cdot c - b - 2 \cdot a \cdot n)} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1A |104 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

(m)/(n)x^(2)+(n)/(m)=1-2x

lim_(x rarr a)(x^(m)-a^(m))/(x^(n)-a^(n))=((m)/(n))a^(m-n) if m>n

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+… and +C_(n)x^(n) Sigma_(r=0)^(50)(C_(r)^(2))/((r+1))=(m!)/((n!)^(2)), then the value of (m+n) is equal to (where C_(r) represents .^(n)C_(r) )

If x^m y^n = (x+y)^(m+n) then find (dy)/(dx) at x=1, y=2

where c is the constant of integration and m,n in N ,the find the valuc of (m+n). If int(dx)/(1+sqrt(x+1)+sqrt(x))=ax+b sqrt(x)+c int sqrt((x+1)/(x))dx where a,b,care constant,then find the value of (a+b+c)

If y=1/(1+x^(n-m)+x^(p-m))+1/(1+x^(m-n)+x^(p-n))+1/(1+x^(m-p)+x^(n-p)) then (dy)/(dx) at e^m^n^p is equal to: e^(m n p) (b) e^(m n//p) (c) e^(n p//m) (d) none

If x^a y^b=e^m , x^c y^d=e^n ,Delta_1=|(m,b),(n,d)|,and Delta_2 =|(a,m),(c,n)| and Delta_3=|(a,b),(c,d)|, then the values of x and y are

if sin^(3)x-sin3x=sum_(m=0rarr n)c_(m)*cos mx is an identity in x, where c_(m)^(=0rarr n) are constant then the value of n is

int(x^(19)dx)/(x^(5)-sqrt(x^(10)-x^(-10)))=(x^(30))/(m)+((x^(20)-1)^((3)/(2)))/(n) where c is the constant of intcgration and m,n in N, then find the value of (m+n)

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1B
  1. If ((m+n) x -(a-b) )/((m-n)x -(a+b))=((m+n)x +a+c)/((m-n)x+a-c) then f...

    Text Solution

    |

  2. If a+b+1=0 then what is the value of (a^(3)+b^(3)+1-3ab)?

    Text Solution

    |

  3. If x=(0.08)^(2), y=(1)/((0.08)^(2)) and z=(1-0.08)^(2)-1 then which of...

    Text Solution

    |

  4. If x^(4)+(1)/(x^(4))=23 then what is the value of (x-(1)/(x))^(2)?

    Text Solution

    |

  5. If x+(1)/(x)=3 then what is the value of x^(5)+(1)/(x^(5)) ?

    Text Solution

    |

  6. If a+b=6, a-b=2 then what is the value of 2(a^(2)+b^(2))?

    Text Solution

    |

  7. If 2a-(2)/(a)+3=0, then value of (a^(3)-(1)/(a^(3))+2) is -

    Text Solution

    |

  8. If factors of x^(3)+(a+1) x^(2)-(b-2)x -6 are (x+1) and (x-2) then val...

    Text Solution

    |

  9. If x is real and x^(4)+(1)/(x^(4))=119, then value of (x-(1)/(x)) is

    Text Solution

    |

  10. If x^(3) + y^(3) = 35 and x + y = 5 then the value of (1)/( x) + (...

    Text Solution

    |

  11. If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1, then value of (a...

    Text Solution

    |

  12. Value of a and b(a gt 0, b lt 0) for which 8x^(3)-ax^(2)+54x+b is a pe...

    Text Solution

    |

  13. If x = ( 4ab)/(a +b) ( a ne b) the value of ( x + 2a)/( x - 2a) + ( x...

    Text Solution

    |

  14. If a+b+c=8, then value of (a-4)^(3) +(b-3)^(3) +(c-1)^(3)-3(a-4) (b-3)...

    Text Solution

    |

  15. If x = sqrt(a) + (1)/( sqrt(a)) , y = sqrt(a) - (1)/( sqrt(a)) ( a gt...

    Text Solution

    |

  16. If 5a+(1)/(3a)=5, then value of 9a^(2)+(1)/(25a^(2)) is

    Text Solution

    |

  17. If a+b+c=0, then what is the value of a^(2)/(bc)+b^(2)/(ca)+c^(2)/(ab)...

    Text Solution

    |

  18. If a, b, c are real, a^(3)+b^(3)+c^(3)=3abc and a+b+c ne 0, then relat...

    Text Solution

    |

  19. If a^(2)+(1)/(a^(2))=98, a gt 0 , then the value of a^(3)+(1)/(a^(3)) ...

    Text Solution

    |

  20. If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x...

    Text Solution

    |

  21. If a ^(2) + b ^(2) + c ^(2) = 2 (a - b -c) - 3, then the value of 2a -...

    Text Solution

    |