Home
Class 14
MATHS
If a^(x) =b^(y) =c^(z) and abc =1 then...

If `a^(x) =b^(y) =c^(z)` and abc =1 then `xy+yz+zx` is equal to which of the following?

A

xyz

B

`x+y+z`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations and conditions: 1. **Given**: \( a^x = b^y = c^z = k \) and \( abc = 1 \). 2. **Expressing a, b, and c in terms of k**: - From \( a^x = k \), we can express \( a \) as: \[ a = k^{\frac{1}{x}} \] - From \( b^y = k \), we can express \( b \) as: \[ b = k^{\frac{1}{y}} \] - From \( c^z = k \), we can express \( c \) as: \[ c = k^{\frac{1}{z}} \] 3. **Substituting into the condition \( abc = 1 \)**: \[ abc = k^{\frac{1}{x}} \cdot k^{\frac{1}{y}} \cdot k^{\frac{1}{z}} = k^{\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)} = 1 \] Since \( k^0 = 1 \), we have: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \] 4. **Finding \( xy + yz + zx \)**: - We know that: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0 \] - This can be rewritten as: \[ \frac{yz + zx + xy}{xyz} = 0 \] - Therefore, the numerator must be zero: \[ yz + zx + xy = 0 \] 5. **Conclusion**: - Thus, we find that: \[ xy + yz + zx = 0 \] ### Final Answer: The value of \( xy + yz + zx \) is **0**.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z) and abc=1 then find the value of xy+yz+zx

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3 pi, then xy+yz+zx is equal to

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

If x+y+z =10 , x^(2) +y^(2) +z^(2) =60 then value of xy+yz +zx is

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1A
  1. If the HCF of x^(3) - 27 and x^(3) + 4x^(2) + 12x + k is a quadratic p...

    Text Solution

    |

  2. When x^(40)+2 is divided by x^(4)+1, then what is the remainder?

    Text Solution

    |

  3. If a^(x) =b^(y) =c^(z) and abc =1 then xy+yz+zx is equal to which of...

    Text Solution

    |

  4. If a = (1+x)/(2-x), then what is (1)/(a+1) + (2a+1)/(a^(2)-1) equal to...

    Text Solution

    |

  5. If pq + qr + rp = 0, then what is the value of (p^(2))/(p^(2) - qr) + ...

    Text Solution

    |

  6. If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(...

    Text Solution

    |

  7. What is ((x-y)^(3) + (y-z)^(3) + (z-x)^(3))/(4(x-y)(y-z)(z-x)) equal t...

    Text Solution

    |

  8. If a+b+c=6, a^(2)+b^(2)+c^(2)=14 and a^(3)+b^(3)+c^(3)=36 then value o...

    Text Solution

    |

  9. If x(x+y+z)=9, y(x+y+z)=16 and z(x+y+z)=144 then what is the value of ...

    Text Solution

    |

  10. If u,v,ware real numbers such that u^(3) - 8v^(3) - 27w^(3) = 18uvw, w...

    Text Solution

    |

  11. If a+b+c=0, then what is the value of a^(2)/(bc)+b^(2)/(ca)+c^(2)/(ab)...

    Text Solution

    |

  12. If (x^(4)+x^(-4))=322, what is one of the value of (x-x^(-1)) ?

    Text Solution

    |

  13. If x varies as m^(th) power of y, y varies as n^(th) power of z and x ...

    Text Solution

    |

  14. If x=(b-c)(a-d),y=(c-a)(b-d),z=(a-b)(c-d), then the what is x^(3)+y^(3...

    Text Solution

    |

  15. If a+b+c=6, a^(2)+b^(2)+c^(2)=26, then ab+bc+ca is equal to

    Text Solution

    |

  16. If 3x^(3) -2x^(2)y -13xy^(2)+10y^(3) is divided by x-2y, then what wil...

    Text Solution

    |

  17. If (a+(1)/(a))^(2)=3 then what is the value of 1+a^(6)+a^(12) +a^(18) ...

    Text Solution

    |

  18. IF x+y+z=0 then what is (xyz)/((x+y)(y+z)(z+x)) equal to

    Text Solution

    |

  19. IF (5x-7y+10)/1=(3x+2y+1)/8=(11x+4y-10)/9 then what is x+y equal to

    Text Solution

    |

  20. If ( 2x - 3y + 1)/(2) = (x + 4y + 8)/(3) = ( 4x - 7y + 2)/(5) then wh...

    Text Solution

    |