Home
Class 14
MATHS
If x+y+z=0 then what is the value of ...

If `x+y+z=0` then what is the value of
`(1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2))`?

A

`(1)/(x^(2)+y^(2)+z^(2))`

B

1

C

`-1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given the condition \( x + y + z = 0 \). The expression we need to simplify is: \[ \frac{1}{x^2 + y^2 - z^2} + \frac{1}{y^2 + z^2 - x^2} + \frac{1}{z^2 + x^2 - y^2} \] ### Step 1: Use the condition \( x + y + z = 0 \) From the condition \( x + y + z = 0 \), we can express \( z \) in terms of \( x \) and \( y \): \[ z = - (x + y) \] ### Step 2: Substitute \( z \) into the expression Now, we substitute \( z \) into each term of the expression. #### First term: \[ x^2 + y^2 - z^2 = x^2 + y^2 - (- (x + y))^2 = x^2 + y^2 - (x^2 + 2xy + y^2) = x^2 + y^2 - x^2 - 2xy - y^2 = -2xy \] Thus, the first term becomes: \[ \frac{1}{x^2 + y^2 - z^2} = \frac{1}{-2xy} \] #### Second term: \[ y^2 + z^2 - x^2 = y^2 + (- (x + y))^2 - x^2 = y^2 + (x^2 + 2xy + y^2) - x^2 = 2y^2 + 2xy \] Thus, the second term becomes: \[ \frac{1}{y^2 + z^2 - x^2} = \frac{1}{2y^2 + 2xy} = \frac{1}{2y(y + x)} \] #### Third term: \[ z^2 + x^2 - y^2 = (- (x + y))^2 + x^2 - y^2 = (x^2 + 2xy + y^2) + x^2 - y^2 = 2x^2 + 2xy \] Thus, the third term becomes: \[ \frac{1}{z^2 + x^2 - y^2} = \frac{1}{2x^2 + 2xy} = \frac{1}{2x(x + y)} \] ### Step 3: Combine all terms Now we combine all three terms: \[ \frac{1}{-2xy} + \frac{1}{2y(y + x)} + \frac{1}{2x(x + y)} \] ### Step 4: Find a common denominator The common denominator for these fractions is \( -2xy \cdot 2y(y + x) \cdot 2x(x + y) \). ### Step 5: Simplify the expression After finding the common denominator, we can combine the numerators. However, we notice that due to the symmetry and the condition \( x + y + z = 0 \), the entire expression simplifies to zero. ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |{:(x^(2),1,y^(2)+z^(2)),(y^(2),1,z^(2)+x^(2)),(z^(2),1,x^(2)+y^(2)):}| is :

If x+y+z=xyz, then value of (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))(x)/(1-x^(2))(y)/(1-y^(2))(z)/(1-z^(2))

If x=1, y=2, z=-1 then find the value of z^2-2xy(x-y)

If x,y,z are distinct real numbers then the value of ((1)/(x-y))^(2)+((1)/(y-z))^(2)+((1)/(z-x))^(2) is

The value of ((x/y- y/x)(y/z -z/y) (z/x -x/z))/((1/x^(2) -1/y^(2))(1/y^(2)-1/z^(2))(1/z^(2)-1/x^(2))) is

If x+y+z=xyz prove that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2))(2y)/(1-y^(2))(2z)/(1-z^(2))

If x+y+z=xzy , prove that : (2x)/(1-x^2) + (2y)/(1-y^2) + (2z)/(1-z^2) = (2x)/(1-x^2) (2y)/(1-y^2) (2z)/(1-z^2)

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1A
  1. If a = (1+x)/(2-x), then what is (1)/(a+1) + (2a+1)/(a^(2)-1) equal to...

    Text Solution

    |

  2. If pq + qr + rp = 0, then what is the value of (p^(2))/(p^(2) - qr) + ...

    Text Solution

    |

  3. If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(...

    Text Solution

    |

  4. What is ((x-y)^(3) + (y-z)^(3) + (z-x)^(3))/(4(x-y)(y-z)(z-x)) equal t...

    Text Solution

    |

  5. If a+b+c=6, a^(2)+b^(2)+c^(2)=14 and a^(3)+b^(3)+c^(3)=36 then value o...

    Text Solution

    |

  6. If x(x+y+z)=9, y(x+y+z)=16 and z(x+y+z)=144 then what is the value of ...

    Text Solution

    |

  7. If u,v,ware real numbers such that u^(3) - 8v^(3) - 27w^(3) = 18uvw, w...

    Text Solution

    |

  8. If a+b+c=0, then what is the value of a^(2)/(bc)+b^(2)/(ca)+c^(2)/(ab)...

    Text Solution

    |

  9. If (x^(4)+x^(-4))=322, what is one of the value of (x-x^(-1)) ?

    Text Solution

    |

  10. If x varies as m^(th) power of y, y varies as n^(th) power of z and x ...

    Text Solution

    |

  11. If x=(b-c)(a-d),y=(c-a)(b-d),z=(a-b)(c-d), then the what is x^(3)+y^(3...

    Text Solution

    |

  12. If a+b+c=6, a^(2)+b^(2)+c^(2)=26, then ab+bc+ca is equal to

    Text Solution

    |

  13. If 3x^(3) -2x^(2)y -13xy^(2)+10y^(3) is divided by x-2y, then what wil...

    Text Solution

    |

  14. If (a+(1)/(a))^(2)=3 then what is the value of 1+a^(6)+a^(12) +a^(18) ...

    Text Solution

    |

  15. IF x+y+z=0 then what is (xyz)/((x+y)(y+z)(z+x)) equal to

    Text Solution

    |

  16. IF (5x-7y+10)/1=(3x+2y+1)/8=(11x+4y-10)/9 then what is x+y equal to

    Text Solution

    |

  17. If ( 2x - 3y + 1)/(2) = (x + 4y + 8)/(3) = ( 4x - 7y + 2)/(5) then wh...

    Text Solution

    |

  18. If x = a ( b - c) , y = b ( c - a) and z = c ( a - b) then ((x)/...

    Text Solution

    |

  19. If x^2 + 2 = 2 x , then the value of x^4 - x^3 - x^2 + 2 is

    Text Solution

    |

  20. If 2^(x)=3^(y)=6^(-z), then the value of 1/x+1/y+1/z-

    Text Solution

    |