Home
Class 14
MATHS
If (a+(1)/(a))^(2)=3 then what is the va...

If `(a+(1)/(a))^(2)=3` then what is the value of `1+a^(6)+a^(12) +a^(18) +a^(84) +a^(90) +a^(200) +a^(206)?`

A

1

B

0

C

8

D

`2a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \left(a + \frac{1}{a}\right)^2 = 3 \] ### Step 1: Expand the left side using the identity Using the identity \((x + y)^2 = x^2 + y^2 + 2xy\), we can rewrite the equation as: \[ a^2 + \frac{1}{a^2} + 2 = 3 \] ### Step 2: Isolate \(a^2 + \frac{1}{a^2}\) Subtract 2 from both sides: \[ a^2 + \frac{1}{a^2} = 3 - 2 = 1 \] ### Step 3: Find \(a^4 + \frac{1}{a^4}\) Now, we can use the identity again to find \(a^4 + \frac{1}{a^4}\): \[ \left(a^2 + \frac{1}{a^2}\right)^2 = a^4 + \frac{1}{a^4} + 2 \] Substituting \(a^2 + \frac{1}{a^2} = 1\): \[ 1^2 = a^4 + \frac{1}{a^4} + 2 \] This simplifies to: \[ 1 = a^4 + \frac{1}{a^4} + 2 \] Subtracting 2 from both sides gives: \[ a^4 + \frac{1}{a^4} = 1 - 2 = -1 \] ### Step 4: Find \(a^6 + \frac{1}{a^6}\) Next, we can find \(a^6 + \frac{1}{a^6}\) using the identity: \[ a^6 + \frac{1}{a^6} = (a^4 + \frac{1}{a^4})(a^2 + \frac{1}{a^2}) - (a^2 + \frac{1}{a^2}) \] Substituting the values we have: \[ a^6 + \frac{1}{a^6} = (-1)(1) - 1 = -1 - 1 = -2 \] ### Step 5: Calculate \(1 + a^6 + a^{12} + a^{18} + a^{84} + a^{90} + a^{200} + a^{206}\) Now, we need to find the value of: \[ 1 + a^6 + a^{12} + a^{18} + a^{84} + a^{90} + a^{200} + a^{206} \] We know \(a^6 + \frac{1}{a^6} = -2\), thus: \[ a^{12} = (a^6)^2 \quad \text{and} \quad a^{18} = a^{12} \cdot a^6 \] Using \(a^6 = -2\): \[ a^{12} = (-2)^2 = 4 \] \[ a^{18} = a^{12} \cdot a^6 = 4 \cdot (-2) = -8 \] Now, we can find \(a^{84}, a^{90}, a^{200}, a^{206}\) by recognizing that they can be expressed in terms of \(a^6\): - \(a^{84} = (a^6)^{14} = (-2)^{14} = 16384\) - \(a^{90} = (a^6)^{15} = (-2)^{15} = -32768\) - \(a^{200} = (a^6)^{33} = (-2)^{33} = -8589934592\) - \(a^{206} = (a^6)^{34} = (-2)^{34} = 17179869184\) ### Final Calculation Now we can sum everything: \[ 1 + (-2) + 4 + (-8) + 16384 + (-32768) + (-8589934592) + 17179869184 \] Calculating this step-by-step: 1. \(1 - 2 = -1\) 2. \(-1 + 4 = 3\) 3. \(3 - 8 = -5\) 4. \(-5 + 16384 = 16379\) 5. \(16379 - 32768 = -16389\) 6. \(-16389 - 8589934592 = -8589934581\) 7. \(-8589934581 + 17179869184 = 8589934583\) Thus, the final answer is: \[ \boxed{8589934583} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

If (a+(1)/(a))^(2)=3, then find the value of a^(30)+a^(24)+a^(18)+a^(12)+a^(6)+1

What is the value of (1/6) + (1/12) + (1/20)?

If a^(2)+1=a then the value of a^(12)+a^(6)+1 is

If x^(2) + ((1)/(x^(2))) =1 , then what is the value of x^(48) + x^(42) + x^(36) + x^(30) + x^(24) + x^(18) + x^(12) + x^(6) + 1 ?

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1A
  1. If a+b+c=6, a^(2)+b^(2)+c^(2)=26, then ab+bc+ca is equal to

    Text Solution

    |

  2. If 3x^(3) -2x^(2)y -13xy^(2)+10y^(3) is divided by x-2y, then what wil...

    Text Solution

    |

  3. If (a+(1)/(a))^(2)=3 then what is the value of 1+a^(6)+a^(12) +a^(18) ...

    Text Solution

    |

  4. IF x+y+z=0 then what is (xyz)/((x+y)(y+z)(z+x)) equal to

    Text Solution

    |

  5. IF (5x-7y+10)/1=(3x+2y+1)/8=(11x+4y-10)/9 then what is x+y equal to

    Text Solution

    |

  6. If ( 2x - 3y + 1)/(2) = (x + 4y + 8)/(3) = ( 4x - 7y + 2)/(5) then wh...

    Text Solution

    |

  7. If x = a ( b - c) , y = b ( c - a) and z = c ( a - b) then ((x)/...

    Text Solution

    |

  8. If x^2 + 2 = 2 x , then the value of x^4 - x^3 - x^2 + 2 is

    Text Solution

    |

  9. If 2^(x)=3^(y)=6^(-z), then the value of 1/x+1/y+1/z-

    Text Solution

    |

  10. If (1)/( x + y) = (1)/(x) + (1)/(y) ( x ne 0, y ne 0, x ne y) then t...

    Text Solution

    |

  11. For real a, b, c if a^(2) + b^(2) + c^(2)= ab + bc + ca then value ...

    Text Solution

    |

  12. If x+(1)/(x)=5 then (2x)/(3x^(2)-5x+3) is

    Text Solution

    |

  13. If x^(4) +(1)/(x^(4)) =119 and x gt 1 then what is the value of x^(3)-...

    Text Solution

    |

  14. If (x+y-z)^(2) +(y+z-x)^(2) +(z+x-y)^(2)=0 then what is the value o...

    Text Solution

    |

  15. If x - y = ( x + y)/(7) = (xy)/(4) the numerical value of xy is

    Text Solution

    |

  16. If x + y + z = 0 then (x^(2))/(yz) + (y^(2))/( zx)+ ( z^(2))/( xy)=...

    Text Solution

    |

  17. If x + y = a and xy = b^(2) then the value of x^(3) - x^(2) y - x...

    Text Solution

    |

  18. If (3a+1)^(2) +(b-1)^(2) +(2c-3)^(2)=0, then value of (3a+b+2c) is

    Text Solution

    |

  19. If xy ( x + y) = 1 ,then the value of (1)/( x^(3) y^(3)) - x^(3) -...

    Text Solution

    |

  20. If frac(x)(2x^2+5x+2)=frac(1)(6), then the value of (x+frac(1)(x)) is

    Text Solution

    |