Home
Class 14
MATHS
If b+c = 2x, c+a =2y and a +b =2z then ...

If `b+c = 2x, c+a =2y and a +b =2z` then value of `a^(3) +b^(3) +c^(3)` is

A

`(x+y +z)^(3) `

B

`(x+y+z)^(3) +24xyz`

C

`(x+y+z)^(3) -24xyz`

D

24xyz

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^3 + b^3 + c^3 \) given the equations \( b + c = 2x \), \( c + a = 2y \), and \( a + b = 2z \), we can follow these steps: ### Step 1: Rewrite the equations We have the following equations: 1. \( b + c = 2x \) (Equation 1) 2. \( c + a = 2y \) (Equation 2) 3. \( a + b = 2z \) (Equation 3) ### Step 2: Express variables in terms of others From Equation 1, we can express \( b \) in terms of \( c \): \[ b = 2x - c \] ### Step 3: Substitute \( b \) into Equation 3 Substituting \( b \) into Equation 3: \[ a + (2x - c) = 2z \] This simplifies to: \[ a - c = 2z - 2x \quad \text{(Equation 4)} \] ### Step 4: Express \( a \) in terms of \( c \) From Equation 2, we can express \( a \) in terms of \( c \): \[ a = 2y - c \] ### Step 5: Substitute \( a \) into Equation 4 Substituting \( a \) into Equation 4: \[ (2y - c) - c = 2z - 2x \] This simplifies to: \[ 2y - 2c = 2z - 2x \] Dividing by 2 gives: \[ y - c = z - x \] Thus, we can express \( c \) as: \[ c = y - z + x \] ### Step 6: Substitute \( c \) back to find \( a \) and \( b \) Now substituting \( c \) back into the expression for \( a \): \[ a = 2y - (y - z + x) = y + z - x \] Now substituting \( c \) back into the expression for \( b \): \[ b = 2x - (y - z + x) = x + z - y \] ### Step 7: Now we have expressions for \( a \), \( b \), and \( c \) - \( a = y + z - x \) - \( b = x + z - y \) - \( c = y - z + x \) ### Step 8: Use the identity for \( a^3 + b^3 + c^3 \) We can use the identity: \[ a^3 + b^3 + c^3 = (a + b + c)^3 - 3(a + b)(b + c)(c + a) \] ### Step 9: Calculate \( a + b + c \) \[ a + b + c = (y + z - x) + (x + z - y) + (y - z + x) = 2x + 2y + 2z - (x + y + z) = x + y + z \] ### Step 10: Calculate \( (a + b + c)^3 \) \[ (a + b + c)^3 = (x + y + z)^3 \] ### Step 11: Calculate \( (a + b)(b + c)(c + a) \) Using the original equations: \[ (a + b) = 2z, \quad (b + c) = 2x, \quad (c + a) = 2y \] Thus, \[ (a + b)(b + c)(c + a) = (2z)(2x)(2y) = 8xyz \] ### Step 12: Substitute into the identity Substituting back into the identity gives: \[ a^3 + b^3 + c^3 = (x + y + z)^3 - 3(8xyz) = (x + y + z)^3 - 24xyz \] ### Final Answer Thus, the value of \( a^3 + b^3 + c^3 \) is: \[ \boxed{(x + y + z)^3 - 24xyz} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

If a=x-y,b=y-z and c=z-x then the value of a^(3)+b^(3)+c^(3)

If (a + b + c) = 2 , a^2+b^2+c^2=26 , then the value of a^3+b^3+c^3-3abc is : यदि (a + b + c) = 2 , a^2+b^2+c^2=26 है, तो a^3+b^3+c^3-3abc का मान ज्ञात करें |

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1A
  1. If p^(2) (a^(2) +b^(2) +c^(2)) -2p (ab +bc +cd) +(b^(2) +c^(2) +d^(2))...

    Text Solution

    |

  2. If b+c =10, c +a =20 , a+b =30 then value of a^(3) +b^(3) +c^(3) is

    Text Solution

    |

  3. If b+c = 2x, c+a =2y and a +b =2z then value of a^(3) +b^(3) +c^(3) i...

    Text Solution

    |

  4. If a+b +c =0 then value of a^(3) +b^(3) +c^(3) is

    Text Solution

    |

  5. Value of (x-y)^(3) +(y-z)^(3) +(z-x)^(3) is

    Text Solution

    |

  6. If a+b+c =p, abc =q and ab+bc +ca =0 then what is the value of a^(2) b...

    Text Solution

    |

  7. If a= 89, b= -69, c= 8 then the value of 9(a+b)^(2) +49 c^(2) -42 (a+b...

    Text Solution

    |

  8. If x=q+r +s, y = r +s -p and z= p+q +r then the value of x^(2) +y^(2)...

    Text Solution

    |

  9. If x+y+z =10 , x^(2) +y^(2) +z^(2) =60 then value of xy+yz +zx is

    Text Solution

    |

  10. If a ^(2) + b ^(2) = 2 and c^(2) + d ^(2) =1, then the value of (ad - ...

    Text Solution

    |

  11. (x-a) (x-b) (a-b) +(x-b) (x-c) (b-c) +(x -c) (x -a) (c-a) is equal to...

    Text Solution

    |

  12. Which one of the following is not a factor of this polynomial x^(8) + ...

    Text Solution

    |

  13. A factor of a^(4) -11 a^(2) b^(2) +b^(4) is

    Text Solution

    |

  14. If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -a...

    Text Solution

    |

  15. If (a+b)x =a and (a+b) y = b then the value of (x^(2)+y^(2))/(x^(2)-y^...

    Text Solution

    |

  16. If x=(p+q)/(p-q) and y=(p-q)/(p+q) then the value of (x-y)/(x+y) is

    Text Solution

    |

  17. If x+(a)/(x) =1 then the value of (x^(3) -x^(2))/(x^(2) +x +a) in term...

    Text Solution

    |

  18. If ( xy)/( x + y) = a , ( xz)/( x + z) = b and ( yz)/( y + z) = c wh...

    Text Solution

    |

  19. HCF and LCM of two algebraic expressions are respectively (a + 1) an...

    Text Solution

    |

  20. If (x^(2)+(1)/(x^(2)))=p, then what is the value of (x^(3)+(1)/(x^(3))...

    Text Solution

    |