Home
Class 14
MATHS
If x+(a)/(x) =1 then the value of (x^(3)...

If `x+(a)/(x) =1` then the value of `(x^(3) -x^(2))/(x^(2) +x +a)` in terms of a is

A

`(a)/(2)`

B

`(-a)/(2)`

C

2a

D

a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation and manipulate it step by step. ### Step 1: Start with the given equation We have: \[ x + \frac{a}{x} = 1 \] ### Step 2: Multiply through by \(x\) to eliminate the fraction Multiplying both sides by \(x\) gives: \[ x^2 + a = x \] ### Step 3: Rearrange the equation Rearranging the equation, we get: \[ x^2 - x + a = 0 \] ### Step 4: Express \(a\) in terms of \(x\) From the rearranged equation, we can express \(a\) as: \[ a = x - x^2 \] ### Step 5: Substitute \(a\) into the expression we need to evaluate We need to find the value of: \[ \frac{x^3 - x^2}{x^2 + x + a} \] Substituting \(a\) from the previous step: \[ \frac{x^3 - x^2}{x^2 + x + (x - x^2)} \] This simplifies to: \[ \frac{x^3 - x^2}{x^2 + x + x - x^2} = \frac{x^3 - x^2}{2x} \] ### Step 6: Simplify the expression Now, we can simplify the expression: \[ \frac{x^3 - x^2}{2x} = \frac{x^2(x - 1)}{2x} = \frac{x(x - 1)}{2} \] ### Step 7: Substitute \(x + \frac{a}{x} = 1\) to find \(x\) From the original equation, we know: \[ x + \frac{a}{x} = 1 \implies x + \frac{x - x^2}{x} = 1 \] This means: \[ x + 1 - x = 1 \] This confirms our manipulation is consistent. ### Step 8: Final expression in terms of \(a\) Since we have \(x(x - 1) = -a\) from our earlier manipulation, we can express our final answer as: \[ \frac{-a}{2} \] ### Final Answer Thus, the value of \(\frac{x^3 - x^2}{x^2 + x + a}\) in terms of \(a\) is: \[ -\frac{a}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

If (x+(1)/(x))=3, then the value of (x^(2)+(1)/(x^(2))) is:

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If (x^3+1/x^3)=2 then the value of (x+1/x) is

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1A
  1. A factor of a^(4) -11 a^(2) b^(2) +b^(4) is

    Text Solution

    |

  2. If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -a...

    Text Solution

    |

  3. If (a+b)x =a and (a+b) y = b then the value of (x^(2)+y^(2))/(x^(2)-y^...

    Text Solution

    |

  4. If x=(p+q)/(p-q) and y=(p-q)/(p+q) then the value of (x-y)/(x+y) is

    Text Solution

    |

  5. If x+(a)/(x) =1 then the value of (x^(3) -x^(2))/(x^(2) +x +a) in term...

    Text Solution

    |

  6. If ( xy)/( x + y) = a , ( xz)/( x + z) = b and ( yz)/( y + z) = c wh...

    Text Solution

    |

  7. HCF and LCM of two algebraic expressions are respectively (a + 1) an...

    Text Solution

    |

  8. If (x^(2)+(1)/(x^(2)))=p, then what is the value of (x^(3)+(1)/(x^(3))...

    Text Solution

    |

  9. If a+b+c=0, then what is the value of (a^(2)+b^(2)+c^(2))/((a-b)^(2)+(...

    Text Solution

    |

  10. If y=(x+(1)/(x)), then the expression x^(4) +x^(3) -4x^(2) +x +1=0 can...

    Text Solution

    |

  11. Value of (2+1) (2^(2) +1) (2^(4) +1) (2^(8) +1) (2^(16) +1) (2^(32) +1...

    Text Solution

    |

  12. HCF of polynomials x^(3)+3x^(2)y +2xy^(2) and x^(4) +6x^(3)y +8x^(2)y...

    Text Solution

    |

  13. If pqr = 1, then what is value of the expression (1)/(1+p+q^(-1)) +(1)...

    Text Solution

    |

  14. If x+y+z=2s, then (s-x)^(3) +(s-y)^(3) +3(s-x) (s-y)z equals

    Text Solution

    |

  15. If x^(2) = y + z, y^(2) = z + x, z^(2) = x + y then the value of (1)/...

    Text Solution

    |

  16. Suppose p, q, r are such that p+q=r and pqr = 30, then what is the val...

    Text Solution

    |

  17. What is the square root of ((x^(5)-1)/(x-1))+(x^(3)+2x^(2)+x) ?

    Text Solution

    |

  18. (x^(8)+4)/(x^(4)+2x^(2)+2) on simplification, equals

    Text Solution

    |

  19. If x+((1)/(x)) =p, then x^(6) +((1)/(x^(6))) equals

    Text Solution

    |

  20. If x+y+z=0, then[(y-z-x)//2]^(3)+[(z-x-y)//2]^(3)+[(x-y-z)//2]^(3) equ...

    Text Solution

    |