Home
Class 14
MATHS
HCF and LCM of two algebraic expression...

HCF and LCM of two algebraic expressions are respectively (a + 1) and `(a^(3) +a^(2)-a-1)`. If one of the expression is `a^(2)-1`, then what is the second expression?

A

`(a+1)`

B

`(a-1)^(2)`

C

`(a+1)^(2)`

D

`(a+1) (a-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second algebraic expression given the HCF and LCM of two expressions and one of the expressions. ### Given: - HCF = \( a + 1 \) - LCM = \( a^3 + a^2 - a - 1 \) - One expression = \( a^2 - 1 \) ### Step 1: Use the relationship between HCF, LCM, and the two expressions. The relationship states that: \[ \text{HCF} \times \text{LCM} = \text{First Expression} \times \text{Second Expression} \] Let the second expression be \( E_2 \). Therefore, we can write: \[ (a + 1)(a^3 + a^2 - a - 1) = (a^2 - 1) \times E_2 \] ### Step 2: Substitute the known values. Substituting the known values into the equation gives us: \[ (a + 1)(a^3 + a^2 - a - 1) = (a^2 - 1) \times E_2 \] ### Step 3: Simplify the left-hand side. First, we need to simplify \( a^2 - 1 \): \[ a^2 - 1 = (a + 1)(a - 1) \] Now, substituting this back into the equation: \[ (a + 1)(a^3 + a^2 - a - 1) = (a + 1)(a - 1) \times E_2 \] ### Step 4: Cancel \( (a + 1) \) from both sides. Assuming \( a + 1 \neq 0 \), we can cancel \( a + 1 \) from both sides: \[ a^3 + a^2 - a - 1 = (a - 1) \times E_2 \] ### Step 5: Solve for \( E_2 \). Now, we can express \( E_2 \) as: \[ E_2 = \frac{a^3 + a^2 - a - 1}{a - 1} \] ### Step 6: Perform polynomial long division. Now we will perform polynomial long division of \( a^3 + a^2 - a - 1 \) by \( a - 1 \). 1. Divide the leading term: \( a^3 \div a = a^2 \). 2. Multiply \( a^2 \) by \( a - 1 \): \( a^3 - a^2 \). 3. Subtract: \[ (a^3 + a^2) - (a^3 - a^2) = 2a^2 \] 4. Bring down the next term: \( 2a^2 - a = 2a^2 - a \). 5. Divide the leading term: \( 2a^2 \div a = 2a \). 6. Multiply \( 2a \) by \( a - 1 \): \( 2a^2 - 2a \). 7. Subtract: \[ (2a^2 - a) - (2a^2 - 2a) = a \] 8. Bring down the next term: \( a - 1 \). 9. Divide the leading term: \( a \div a = 1 \). 10. Multiply \( 1 \) by \( a - 1 \): \( a - 1 \). 11. Subtract: \[ (a - 1) - (a - 1) = 0 \] Thus, we have: \[ E_2 = a^2 + 2a + 1 \] ### Step 7: Recognize the result. The expression \( a^2 + 2a + 1 \) can be factored as: \[ E_2 = (a + 1)^2 \] ### Final Answer: The second expression is: \[ \boxed{(a + 1)^2} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

1. What is the Orient express?

The HCF of two expressions a and b is 1. Their LCM is

Factoris the expression. a ^(3) + a ^(2) + a + 1

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1A
  1. A factor of a^(4) -11 a^(2) b^(2) +b^(4) is

    Text Solution

    |

  2. If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -a...

    Text Solution

    |

  3. If (a+b)x =a and (a+b) y = b then the value of (x^(2)+y^(2))/(x^(2)-y^...

    Text Solution

    |

  4. If x=(p+q)/(p-q) and y=(p-q)/(p+q) then the value of (x-y)/(x+y) is

    Text Solution

    |

  5. If x+(a)/(x) =1 then the value of (x^(3) -x^(2))/(x^(2) +x +a) in term...

    Text Solution

    |

  6. If ( xy)/( x + y) = a , ( xz)/( x + z) = b and ( yz)/( y + z) = c wh...

    Text Solution

    |

  7. HCF and LCM of two algebraic expressions are respectively (a + 1) an...

    Text Solution

    |

  8. If (x^(2)+(1)/(x^(2)))=p, then what is the value of (x^(3)+(1)/(x^(3))...

    Text Solution

    |

  9. If a+b+c=0, then what is the value of (a^(2)+b^(2)+c^(2))/((a-b)^(2)+(...

    Text Solution

    |

  10. If y=(x+(1)/(x)), then the expression x^(4) +x^(3) -4x^(2) +x +1=0 can...

    Text Solution

    |

  11. Value of (2+1) (2^(2) +1) (2^(4) +1) (2^(8) +1) (2^(16) +1) (2^(32) +1...

    Text Solution

    |

  12. HCF of polynomials x^(3)+3x^(2)y +2xy^(2) and x^(4) +6x^(3)y +8x^(2)y...

    Text Solution

    |

  13. If pqr = 1, then what is value of the expression (1)/(1+p+q^(-1)) +(1)...

    Text Solution

    |

  14. If x+y+z=2s, then (s-x)^(3) +(s-y)^(3) +3(s-x) (s-y)z equals

    Text Solution

    |

  15. If x^(2) = y + z, y^(2) = z + x, z^(2) = x + y then the value of (1)/...

    Text Solution

    |

  16. Suppose p, q, r are such that p+q=r and pqr = 30, then what is the val...

    Text Solution

    |

  17. What is the square root of ((x^(5)-1)/(x-1))+(x^(3)+2x^(2)+x) ?

    Text Solution

    |

  18. (x^(8)+4)/(x^(4)+2x^(2)+2) on simplification, equals

    Text Solution

    |

  19. If x+((1)/(x)) =p, then x^(6) +((1)/(x^(6))) equals

    Text Solution

    |

  20. If x+y+z=0, then[(y-z-x)//2]^(3)+[(z-x-y)//2]^(3)+[(x-y-z)//2]^(3) equ...

    Text Solution

    |