Home
Class 14
MATHS
Value of (2+1) (2^(2) +1) (2^(4) +1) (2^...

Value of `(2+1) (2^(2) +1) (2^(4) +1) (2^(8) +1) (2^(16) +1) (2^(32) +1) (2^(64) +1)` is

A

`2^(256)-1`

B

`2^(256)+1`

C

`2^(128)-1`

D

`2^(128)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((2+1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1)(2^{32} + 1)(2^{64} + 1)\), we can use the formula for the difference of squares. ### Step-by-Step Solution: 1. **Rewrite the Expression**: \[ (2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1)(2^{32} + 1)(2^{64} + 1) \] 2. **Recognize the Pattern**: Notice that we can express this product in terms of a difference of squares: \[ (2^1 - 1)(2^1 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1)(2^{32} + 1)(2^{64} + 1) \] Here, we added \( (2 - 1) \) to the product. 3. **Apply the Difference of Squares**: Using the identity \( a^2 - b^2 = (a - b)(a + b) \), we can pair the terms: \[ (2^1 - 1)(2^1 + 1) = 2^2 - 1^2 = 4 - 1 = 3 \] Now, we can express the remaining terms: \[ (2^2 + 1)(2^4 + 1)(2^8 + 1)(2^{16} + 1)(2^{32} + 1)(2^{64} + 1) \] 4. **Continue Applying the Difference of Squares**: Continuing this process: - For \( (2^2 - 1)(2^2 + 1) = 2^4 - 1^2 = 16 - 1 = 15 \) - For \( (2^4 - 1)(2^4 + 1) = 2^8 - 1^2 = 256 - 1 = 255 \) - For \( (2^8 - 1)(2^8 + 1) = 2^{16} - 1^2 = 65536 - 1 = 65535 \) - For \( (2^{16} - 1)(2^{16} + 1) = 2^{32} - 1^2 = 4294967296 - 1 = 4294967295 \) - For \( (2^{32} - 1)(2^{32} + 1) = 2^{64} - 1^2 = 18446744073709551616 - 1 = 18446744073709551615 \) 5. **Final Calculation**: The final result can be expressed as: \[ 2^{128} - 1 \] Therefore, the value of the original expression is: \[ 2^{128} - 1 \] ### Final Answer: \[ \text{Value} = 2^{128} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ALGEBRAIC IDENTITIES

    LUCENT PUBLICATION|Exercise Exercise - 1B|28 Videos
  • ADVANCED TRIGONOMETRIC IDENTITIES

    LUCENT PUBLICATION|Exercise EXERCISE 13A|49 Videos
  • CENTRE OF TRIANGLE

    LUCENT PUBLICATION|Exercise EXERCISE-6B|8 Videos

Similar Questions

Explore conceptually related problems

(_(2+1)(2^(2)+1)(2^(4)+1)(2^(8)+1))/(2^(8)-1)=4^(n)+1

Find the value of (2^(1//4)- 1) (2^(3//4) + 2^(1//2) +2^(1//4) + 1)

(1)/(2) + (1)/(4) + (1)/(8) +(1)/(16) + …" to" oo is

LUCENT PUBLICATION-ALGEBRAIC IDENTITIES -Exercise - 1A
  1. A factor of a^(4) -11 a^(2) b^(2) +b^(4) is

    Text Solution

    |

  2. If a^(2) +b^(2) = x, ab = y then the value of (a^(4) +b^(4))/(a^(2) -a...

    Text Solution

    |

  3. If (a+b)x =a and (a+b) y = b then the value of (x^(2)+y^(2))/(x^(2)-y^...

    Text Solution

    |

  4. If x=(p+q)/(p-q) and y=(p-q)/(p+q) then the value of (x-y)/(x+y) is

    Text Solution

    |

  5. If x+(a)/(x) =1 then the value of (x^(3) -x^(2))/(x^(2) +x +a) in term...

    Text Solution

    |

  6. If ( xy)/( x + y) = a , ( xz)/( x + z) = b and ( yz)/( y + z) = c wh...

    Text Solution

    |

  7. HCF and LCM of two algebraic expressions are respectively (a + 1) an...

    Text Solution

    |

  8. If (x^(2)+(1)/(x^(2)))=p, then what is the value of (x^(3)+(1)/(x^(3))...

    Text Solution

    |

  9. If a+b+c=0, then what is the value of (a^(2)+b^(2)+c^(2))/((a-b)^(2)+(...

    Text Solution

    |

  10. If y=(x+(1)/(x)), then the expression x^(4) +x^(3) -4x^(2) +x +1=0 can...

    Text Solution

    |

  11. Value of (2+1) (2^(2) +1) (2^(4) +1) (2^(8) +1) (2^(16) +1) (2^(32) +1...

    Text Solution

    |

  12. HCF of polynomials x^(3)+3x^(2)y +2xy^(2) and x^(4) +6x^(3)y +8x^(2)y...

    Text Solution

    |

  13. If pqr = 1, then what is value of the expression (1)/(1+p+q^(-1)) +(1)...

    Text Solution

    |

  14. If x+y+z=2s, then (s-x)^(3) +(s-y)^(3) +3(s-x) (s-y)z equals

    Text Solution

    |

  15. If x^(2) = y + z, y^(2) = z + x, z^(2) = x + y then the value of (1)/...

    Text Solution

    |

  16. Suppose p, q, r are such that p+q=r and pqr = 30, then what is the val...

    Text Solution

    |

  17. What is the square root of ((x^(5)-1)/(x-1))+(x^(3)+2x^(2)+x) ?

    Text Solution

    |

  18. (x^(8)+4)/(x^(4)+2x^(2)+2) on simplification, equals

    Text Solution

    |

  19. If x+((1)/(x)) =p, then x^(6) +((1)/(x^(6))) equals

    Text Solution

    |

  20. If x+y+z=0, then[(y-z-x)//2]^(3)+[(z-x-y)//2]^(3)+[(x-y-z)//2]^(3) equ...

    Text Solution

    |