Home
Class 14
MATHS
If tan theta=(q)/(p) then find the value...

If `tan theta=(q)/(p)` then find the value of `(p sintheta+qcos theta)/(p cos theta+qsintheta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information that \( \tan \theta = \frac{q}{p} \). We need to find the value of \[ \frac{p \sin \theta + q \cos \theta}{p \cos \theta + q \sin \theta}. \] ### Step 1: Rewrite the expression using \( \tan \theta \) We know that \( \tan \theta = \frac{\sin \theta}{\cos \theta} \). Therefore, we can express \( \sin \theta \) and \( \cos \theta \) in terms of \( \tan \theta \): \[ \sin \theta = \tan \theta \cdot \cos \theta = \frac{q}{p} \cdot \cos \theta. \] ### Step 2: Substitute \( \sin \theta \) in the expression Now, substituting \( \sin \theta \) in the original expression: \[ \frac{p \left(\frac{q}{p} \cos \theta\right) + q \cos \theta}{p \cos \theta + q \left(\frac{q}{p} \cos \theta\right)}. \] This simplifies to: \[ \frac{q \cos \theta + q \cos \theta}{p \cos \theta + \frac{q^2}{p} \cos \theta}. \] ### Step 3: Factor out \( \cos \theta \) Factoring out \( \cos \theta \) from both the numerator and the denominator gives: \[ \frac{(q + q) \cos \theta}{\left(p + \frac{q^2}{p}\right) \cos \theta}. \] ### Step 4: Simplify the expression Now, we can simplify this further: \[ \frac{2q \cos \theta}{\left(p + \frac{q^2}{p}\right) \cos \theta}. \] Since \( \cos \theta \) is common in both numerator and denominator, we can cancel it out (assuming \( \cos \theta \neq 0 \)): \[ \frac{2q}{p + \frac{q^2}{p}}. \] ### Step 5: Simplify the denominator The denominator can be rewritten as: \[ p + \frac{q^2}{p} = \frac{p^2 + q^2}{p}. \] ### Step 6: Final expression Thus, we have: \[ \frac{2q}{\frac{p^2 + q^2}{p}} = \frac{2q \cdot p}{p^2 + q^2}. \] So, the final answer is: \[ \frac{2pq}{p^2 + q^2}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIO OF SPECIFIC ANGLES

    LUCENT PUBLICATION|Exercise Exercise 10A|60 Videos
  • TRIGONOMETRIC RATIO OF SPECIFIC ANGLES

    LUCENT PUBLICATION|Exercise Exercise 10B|10 Videos
  • QUADRILATERAL

    LUCENT PUBLICATION|Exercise Exercise 7B|6 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(p)/(q) then the value of (p sin theta-q cos theta)/(p sin theta+q cos theta) is

If sec theta-tan theta=p then find the value of sin theta

If sin theta=(p)/(q), then the value of cos theta+sin theta

If tan theta=(p)/(q) then (p sin theta-q cos theta)/(p sin tehta+q cos theta)=

If sec theta+tan theta=p, then find the value of cos ec theta.

If tan6 theta=(p)/(q), find the value of (1)/(2)(p cos ec2 theta-q sec2 theta)

If tan theta =7/24 then find the value of p such that (tan theta-sec theta)/(sin theta)=-p/28

If tan theta = (p)/(q) , then what is (p sec theta - q cosec theta)/(p sec theta + q cosec theta) equal to ?

if sec theta+tan theta=p, then find the value of cos ec theta

If cos theta= (p-1)/(p+1) then tan theta=