Home
Class 14
MATHS
Given below are respectively base and hy...

Given below are respectively base and hypotenuse of four right angle triangles :
`1` and `sqrt(5),2` and `sqrt(13),3` and `5,4` and `sqrt(41)`
`theta_(1),theta_(2),theta_(3),theta_(4)` are respectively angle included between them . What are the increasing order of these values .
1. `sin theta_(1)`
2. `tan theta_(2)`
3. `cos theta_(3)`
4. `sec theta_(4)`
Choose the correct code among following :

A

`4-1-2-3`

B

`1-4-3-2`

C

`3-1-2-4`

D

`3-1-4-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will calculate the values of \( \sin \theta_1 \), \( \tan \theta_2 \), \( \cos \theta_3 \), and \( \sec \theta_4 \) step by step for the given triangles. ### Step 1: Calculate \( \sin \theta_1 \) - **Given:** Base \( b_1 = 1 \) and Hypotenuse \( h_1 = \sqrt{5} \) - **Using Pythagorean theorem:** \[ \text{Perpendicular} (p_1) = \sqrt{h_1^2 - b_1^2} = \sqrt{(\sqrt{5})^2 - 1^2} = \sqrt{5 - 1} = \sqrt{4} = 2 \] - **Calculate \( \sin \theta_1 \):** \[ \sin \theta_1 = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{p_1}{h_1} = \frac{2}{\sqrt{5}} \approx 0.894 \] ### Step 2: Calculate \( \tan \theta_2 \) - **Given:** Base \( b_2 = 2 \) and Hypotenuse \( h_2 = \sqrt{13} \) - **Using Pythagorean theorem:** \[ \text{Perpendicular} (p_2) = \sqrt{h_2^2 - b_2^2} = \sqrt{(\sqrt{13})^2 - 2^2} = \sqrt{13 - 4} = \sqrt{9} = 3 \] - **Calculate \( \tan \theta_2 \):** \[ \tan \theta_2 = \frac{\text{Perpendicular}}{\text{Base}} = \frac{p_2}{b_2} = \frac{3}{2} = 1.5 \] ### Step 3: Calculate \( \cos \theta_3 \) - **Given:** Base \( b_3 = 3 \) and Hypotenuse \( h_3 = 5 \) - **Using Pythagorean theorem:** \[ \text{Perpendicular} (p_3) = \sqrt{h_3^2 - b_3^2} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \] - **Calculate \( \cos \theta_3 \):** \[ \cos \theta_3 = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{b_3}{h_3} = \frac{3}{5} = 0.6 \] ### Step 4: Calculate \( \sec \theta_4 \) - **Given:** Base \( b_4 = 4 \) and Hypotenuse \( h_4 = \sqrt{41} \) - **Using Pythagorean theorem:** \[ \text{Perpendicular} (p_4) = \sqrt{h_4^2 - b_4^2} = \sqrt{(\sqrt{41})^2 - 4^2} = \sqrt{41 - 16} = \sqrt{25} = 5 \] - **Calculate \( \sec \theta_4 \):** \[ \sec \theta_4 = \frac{\text{Hypotenuse}}{\text{Base}} = \frac{h_4}{b_4} = \frac{\sqrt{41}}{4} \approx 1.60075 \] ### Summary of Values - \( \sin \theta_1 \approx 0.894 \) - \( \tan \theta_2 = 1.5 \) - \( \cos \theta_3 = 0.6 \) - \( \sec \theta_4 \approx 1.60075 \) ### Step 5: Arrange in Increasing Order Now we can arrange the values in increasing order: 1. \( \cos \theta_3 \approx 0.6 \) 2. \( \sin \theta_1 \approx 0.894 \) 3. \( \tan \theta_2 = 1.5 \) 4. \( \sec \theta_4 \approx 1.60075 \) Thus, the increasing order is: \[ \cos \theta_3, \sin \theta_1, \tan \theta_2, \sec \theta_4 \] ### Final Answer The increasing order of the values is: \[ 3, 1, 2, 4 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIO OF SPECIFIC ANGLES

    LUCENT PUBLICATION|Exercise Exercise 10B|10 Videos
  • TRIGONOMETRIC RATIO OF SPECIFIC ANGLES

    LUCENT PUBLICATION|Exercise Exercise 10B|10 Videos
  • QUADRILATERAL

    LUCENT PUBLICATION|Exercise Exercise 7B|6 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin 2 theta_1 + tan 3theta_2 , if tan(theta_1 + theta_2) = sqrt(3) and sec ( theta_1 - theta_2 )= (2)/(sqrt3) .

If sin theta_(1)+sin theta_(2)+sin theta_(3), then find the value of cos theta_(1)+cos theta_(2)+cos theta_(3)

If 4 tan theta =3 , evaluate ((4 sin theta - 2cos theta +3)/(4 sin theta +2 cos theta -5))

If 4 tan theta = 3, evaluate ((4 sin theta -2 cos theta+3)/(4 sin theta + 2cos theta-5))

If theta _(1), theta _(2), theta _(3) and theta_(4) be the ecentric angles of point where a circle cuts an ellipes such that pi lt theta _(1) + theta _(2) + theta_(3)+ theta_(4) lt 5pi, then cos (theta _(1) + theta _(2)+theta _(3) +theta_(4)) equals to "______"

If tan theta = (5)/(4) , then the value of ((3 sin theta + 4 cos theta)/(3 sin theta - 4 cos theta))^(2) is

Given sqrt(3)tan theta=1 and theta is an acute angle. Find the value of sin3 theta.

Solve sqrt(3)cos theta-3sin theta=4sin2 theta cos3 theta

If sec theta = (13)/( 5) , then what is the value of (2 sin theta - 3 cos theta )/( 4 sin theta - 9 cos theta )

If 3cos theta=1, find the value of (6sin^(2)theta+tan^(2)theta)/(4cos theta)

LUCENT PUBLICATION-TRIGONOMETRIC RATIO OF SPECIFIC ANGLES-Exercise 10A
  1. If (cosectheta+sintheta)/(cosectheta-sintheta)=(5)/(3) and 0^(@)ltthet...

    Text Solution

    |

  2. Choose the correct statement :

    Text Solution

    |

  3. Given below are respectively base and hypotenuse of four right angle t...

    Text Solution

    |

  4. Consider the following statements about the expression sin^(3)theta+2s...

    Text Solution

    |

  5. Consider right angled DeltaABC with /B=90^(@) . If /ACB=60^(@) , then ...

    Text Solution

    |

  6. In DeltaABC, /ABC=60^(@) and AD is perpendicular from A to BC . If AB=...

    Text Solution

    |

  7. If 0^(@)lethetale90^(@) then for any value of theta which one is corre...

    Text Solution

    |

  8. If 0^@ lt theta lt 90^@, then the value of sin theta + cos theta is

    Text Solution

    |

  9. If sin theta+cosec theta=2 then value of sin^(4)theta+cos^(4)theta ?

    Text Solution

    |

  10. If sec theta = (13)/( 5) , then what is the value of (2 sin theta - ...

    Text Solution

    |

  11. If 0^(@)lexle90^(@) and sinx+sqrt(3)cosx=1 , then what is the value of...

    Text Solution

    |

  12. In a right angled DeltaABC if /B=90^(@),AC=2sqrt(5) and AB-BC=2 then w...

    Text Solution

    |

  13. Statement (A) : If tantheta+cottheta=2 , then for all n epsilon N, tan...

    Text Solution

    |

  14. What is the value of expression cos^(2)((pi)/(8))+4cos^(2)((pi)/(4))-s...

    Text Solution

    |

  15. If qcosectheta=p and theta is acute then value of (sqrt(p^(2)-q^(2)))t...

    Text Solution

    |

  16. If 2x^(2)cos 60^(@)-4cot^(2)45^(@)-2tan 60^(@)=0, then what is the val...

    Text Solution

    |

  17. If 13 cos theta=12k-5 where 0lethetale90^(@) and k is an integer then ...

    Text Solution

    |

  18. Statement (A) : tan50^(@)gt1 Reason (R ) : For 0^(@)ltthetalt90^(@),...

    Text Solution

    |

  19. Which one of the following is true ?

    Text Solution

    |

  20. (kcosec^(2)30^(@).sec^(2)45)/(8cos^(2)45^(@).sin^(2)60^(@))=tan^(2)60^...

    Text Solution

    |