Home
Class 14
MATHS
In a right angled triangle ABC, AB=2.5 "...

In a right angled triangle ABC, `AB=2.5 "cm" cos B=0.5 /_ ACB= 90^(@)` Then length of side AC is?

A

`5sqrt(3)`

B

`(5)/(2)sqrt(3)`

C

`(5)/(4)sqrt(3)`

D

`(5)/(16)sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of side AC in triangle ABC, we can follow these steps: ### Step 1: Identify the Given Information - We have a right triangle ABC with: - \( AB = 2.5 \, \text{cm} \) - \( \cos B = 0.5 \) - \( \angle ACB = 90^\circ \) ### Step 2: Determine Angle B - Since \( \cos B = 0.5 \), we can determine that: - \( B = 60^\circ \) (because \( \cos 60^\circ = 0.5 \)) ### Step 3: Calculate Angle A - The sum of angles in a triangle is \( 180^\circ \). Therefore: \[ \angle A + \angle B + \angle C = 180^\circ \] Substituting the known values: \[ \angle A + 60^\circ + 90^\circ = 180^\circ \] Simplifying gives: \[ \angle A = 180^\circ - 150^\circ = 30^\circ \] ### Step 4: Use the Sine Rule - The sine rule states that: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] In triangle ABC, we can write: \[ \frac{AB}{\sin C} = \frac{AC}{\sin B} \] Where: - \( AB = 2.5 \, \text{cm} \) - \( \sin C = \sin 90^\circ = 1 \) - \( \sin B = \sin 60^\circ = \frac{\sqrt{3}}{2} \) ### Step 5: Substitute the Values into the Sine Rule - Plugging in the values: \[ \frac{2.5}{1} = \frac{AC}{\frac{\sqrt{3}}{2}} \] ### Step 6: Solve for AC - Rearranging gives: \[ AC = 2.5 \cdot \frac{\sqrt{3}}{2} \] Simplifying: \[ AC = \frac{2.5 \sqrt{3}}{2} = 1.25 \sqrt{3} \, \text{cm} \] ### Step 7: Final Calculation - If we want to express AC in decimal form, using \( \sqrt{3} \approx 1.73 \): \[ AC \approx 1.25 \cdot 1.73 \approx 2.165 \, \text{cm} \] ### Conclusion - The length of side AC is \( 1.25 \sqrt{3} \, \text{cm} \) or approximately \( 2.165 \, \text{cm} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIO OF SPECIFIC ANGLES

    LUCENT PUBLICATION|Exercise Exercise 10A|60 Videos
  • QUADRILATERAL

    LUCENT PUBLICATION|Exercise Exercise 7B|6 Videos

Similar Questions

Explore conceptually related problems

In a right angled triangle ABC,AB=2.5cm,cos B=0.5,/_ACB=90^(@) Length of side in AC in cm is

In a right-angled triangle ABC, if angle B = 90° , BC = 3 cm and AC = 5 cm, then the length of side AB is

In a triangle /_\ABC,AB=35cm,BC=12cm , and /_B=90^@ , then length of AC will be

ABC is a right angled triangle AB = 3 cm, BC = 5 cm and AC = 4 cm, then the inradius of the circle is :

ABC is a right angled triangle AB = 3 cm, BC = 5 cm and AC = 4 cm, then the inradius of the circle is :