Home
Class 14
MATHS
If cos theta=(4)/(5) , then value of (co...

If `cos theta=(4)/(5)` , then value of `(cosec theta)/(1+cot theta)` is

A

`(7)/(5)`

B

`(2)/(7)`

C

`(5)/(7)`

D

`(4)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\csc \theta}{1 + \cot \theta}\) given that \(\cos \theta = \frac{4}{5}\). ### Step 1: Determine the sides of the triangle Since \(\cos \theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{4}{5}\), we can consider a right triangle where: - Base (adjacent side) = 4 - Hypotenuse = 5 To find the perpendicular side (opposite side), we can use the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Base}^2 + \text{Perpendicular}^2 \] Substituting the known values: \[ 5^2 = 4^2 + \text{Perpendicular}^2 \] \[ 25 = 16 + \text{Perpendicular}^2 \] \[ \text{Perpendicular}^2 = 25 - 16 = 9 \] \[ \text{Perpendicular} = \sqrt{9} = 3 \] ### Step 2: Calculate \(\csc \theta\) The cosecant function is defined as: \[ \csc \theta = \frac{\text{Hypotenuse}}{\text{Perpendicular}} = \frac{5}{3} \] ### Step 3: Calculate \(\cot \theta\) The cotangent function is defined as: \[ \cot \theta = \frac{\text{Base}}{\text{Perpendicular}} = \frac{4}{3} \] ### Step 4: Substitute into the expression Now, we need to substitute \(\csc \theta\) and \(\cot \theta\) into the expression \(\frac{\csc \theta}{1 + \cot \theta}\): \[ 1 + \cot \theta = 1 + \frac{4}{3} = \frac{3}{3} + \frac{4}{3} = \frac{7}{3} \] ### Step 5: Final calculation Now we can substitute these values into the expression: \[ \frac{\csc \theta}{1 + \cot \theta} = \frac{\frac{5}{3}}{\frac{7}{3}} = \frac{5}{3} \times \frac{3}{7} = \frac{5}{7} \] Thus, the final answer is: \[ \frac{\csc \theta}{1 + \cot \theta} = \frac{5}{7} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIO OF SPECIFIC ANGLES

    LUCENT PUBLICATION|Exercise Exercise 10A|60 Videos
  • QUADRILATERAL

    LUCENT PUBLICATION|Exercise Exercise 7B|6 Videos

Similar Questions

Explore conceptually related problems

The value of ("cosec" theta -cot theta)^(2) is

If cosec theta =x + 1/(4x) then the value of cosec theta + cot theta is

If cos theta =(3)/(5) ,"find the value of "((5"cosec "theta- 4 tan theta )/(sectheta + cot theta)).

If "cosec"theta - cot theta = 1/3 , then the value of "cosec"theta + cot theta is:

If cos theta=(3)/(5) , then find the value of tan theta, "cosec" theta

If sin theta = 3/5 , then the value of (tan theta + cos theta)/(cot theta + cosec theta) is equal to

If "cosec"theta=x+(1)/(4x) , then find the value of "cosec"theta+cot theta .

If sin theta = 4/5 , what is the value of cot theta + cosec theta =?

For theta being an acute angle, if cosec theta= 1.25 , then the value of (4 tan theta-5 cos theta)/(sec theta+4 cot theta) is equal to : यदि theta एक न्यून कोण है तथा यदि cosec theta= 1.25 है, तो (4 tan theta-5 cos theta)/(sec theta+4 cot theta) का मान किसके बराबर होगा?