Home
Class 12
MATHS
The root of the equation 17x^(2)+17x tan...

The root of the equation `17x^(2)+17x tan [2 tan^(-1)((1)/(5))-(pi)/(4)]-10=0` is

A

`(10)/(7)`

B

`-1`

C

`-(7)/(17)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 17x^2 + 17x \tan\left[2\tan^{-1}\left(\frac{1}{5}\right) - \frac{\pi}{4}\right] - 10 = 0 \), we will follow these steps: ### Step 1: Simplify the expression inside the tangent function We start with the expression \( 2\tan^{-1}\left(\frac{1}{5}\right) - \frac{\pi}{4} \). Using the double angle formula for tangent: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \( \theta = \tan^{-1}\left(\frac{1}{5}\right) \), then \( \tan(\theta) = \frac{1}{5} \). Calculating \( \tan(2\theta) \): \[ \tan(2\tan^{-1}\left(\frac{1}{5}\right)) = \frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2} = \frac{\frac{2}{5}}{1 - \frac{1}{25}} = \frac{\frac{2}{5}}{\frac{24}{25}} = \frac{2 \cdot 25}{5 \cdot 24} = \frac{10}{24} = \frac{5}{12} \] Now we can rewrite the expression: \[ \tan\left[2\tan^{-1}\left(\frac{1}{5}\right) - \frac{\pi}{4}\right] = \frac{\tan(2\tan^{-1}\left(\frac{1}{5}\right)) - \tan\left(\frac{\pi}{4}\right)}{1 + \tan(2\tan^{-1}\left(\frac{1}{5}\right)) \tan\left(\frac{\pi}{4}\right)} \] Substituting \( \tan\left(\frac{\pi}{4}\right) = 1 \): \[ = \frac{\frac{5}{12} - 1}{1 + \frac{5}{12} \cdot 1} = \frac{\frac{5}{12} - \frac{12}{12}}{1 + \frac{5}{12}} = \frac{-\frac{7}{12}}{\frac{17}{12}} = -\frac{7}{17} \] ### Step 2: Substitute back into the original equation Now, substituting this back into the original equation: \[ 17x^2 + 17x\left(-\frac{7}{17}\right) - 10 = 0 \] This simplifies to: \[ 17x^2 - 7x - 10 = 0 \] ### Step 3: Solve the quadratic equation We will use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 17 \), \( b = -7 \), and \( c = -10 \). Calculating the discriminant: \[ b^2 - 4ac = (-7)^2 - 4 \cdot 17 \cdot (-10) = 49 + 680 = 729 \] Now, substituting into the quadratic formula: \[ x = \frac{7 \pm \sqrt{729}}{34} = \frac{7 \pm 27}{34} \] Calculating the two possible values for \( x \): 1. \( x = \frac{34}{34} = 1 \) 2. \( x = \frac{-20}{34} = -\frac{10}{17} \) ### Step 4: Conclusion The roots of the equation are \( x = 1 \) and \( x = -\frac{10}{17} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    BITSAT GUIDE|Exercise BITSAT Archives|41 Videos
  • THREE DIMENSIONAL GEOMETRY

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |11 Videos
  • VECTOR ALGEBRA

    BITSAT GUIDE|Exercise BITSAT Archives|21 Videos

Similar Questions

Explore conceptually related problems

A root of the equation 17x^(2)+17x tan[2tan^(-1)((1)/(5))-(pi)/(4)]-10=0 is (i) (10)/(17)(ii)-1(iii)-(7)/(17) (iv) 1

tan(2tan^(-1)(1)/(5)-(pi)/(4))+(7)/(17)=0

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

cos^(-1)(15/17)+2 tan^(-1)(1/5)=

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

BITSAT GUIDE-TRIGONOMETRY-BITSAT Archives
  1. The root of the equation 17x^(2)+17x tan [2 tan^(-1)((1)/(5))-(pi)/(4)...

    Text Solution

    |

  2. Number of roots of the equation |sinxcosx| +sqrt(2+t a n^2x+cot^2x)=sq...

    Text Solution

    |

  3. The greatest and least values of (sin^(-1)x)^(2) + (cos^(-1)x)^(2) are...

    Text Solution

    |

  4. Find the number of solutions of cos x =|1+ sin x |, 0 le x le 3 pi

    Text Solution

    |

  5. The vaue of the expression sin [cot^(-1){cos (tan^(-1))}] is

    Text Solution

    |

  6. An object is observed from the points A, B and C lying in a horizontal...

    Text Solution

    |

  7. If tan 20^(@) =lamda, then (tan 160^(@) -tan 110^(@))/(1+ (tan 160^(@)...

    Text Solution

    |

  8. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  9. If A+B+C=90^(@)," then "(cot A+ cot B+ cot C)/(cot A cot B cot C) is e...

    Text Solution

    |

  10. In Delta ABC, if a=2, b=3 and sin A =(2)/(3). Then, cos C is equal to

    Text Solution

    |

  11. If 4 sin^(-1) x + cos^(-1) x= pi, then x is equal to

    Text Solution

    |

  12. If tan theta =(1)/(2) and tan phi =(1)/(3), then the value of theta + ...

    Text Solution

    |

  13. If sin theta =(1)/(2) and tan theta =(1)/(sqrt(3)), AA n in l, then mo...

    Text Solution

    |

  14. The function sin x + cos x is maximum, when x is equal to

    Text Solution

    |

  15. Principal value of sin^(-1). (-(sqrt(3))/(2))is

    Text Solution

    |

  16. If angles A,B and C are in AP, then (a+c)/(b) is equal to

    Text Solution

    |

  17. (1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is...

    Text Solution

    |

  18. The solution of the equation sectheta-cosectheta=(4)/(3) is

    Text Solution

    |

  19. What is the minimum value of 9 tan ^(2) theta + 4 cot ^(2) theta ?

    Text Solution

    |

  20. If a le sin^(-1) x+cos^(-1)x+tan^(-1) x le b, then

    Text Solution

    |

  21. If sin^(-1)x+sin^(-1) y=(2pi)/3 and cos^(-1)x-cos^(-1) y= pi/3 ," then...

    Text Solution

    |