Home
Class 12
MATHS
If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5 pi...

If `(tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5 pi^(2))/(8)`, then the value of x is

A

`-2`

B

`-3`

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}\), we can follow these steps: ### Step 1: Use the identity for \(\cot^{-1} x\) We know that: \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] Substituting this into the equation gives: \[ (\tan^{-1} x)^2 + \left(\frac{\pi}{2} - \tan^{-1} x\right)^2 = \frac{5\pi^2}{8} \] ### Step 2: Expand the equation Now, let's expand the second term: \[ \left(\frac{\pi}{2} - \tan^{-1} x\right)^2 = \left(\frac{\pi}{2}\right)^2 - 2\left(\frac{\pi}{2}\right)(\tan^{-1} x) + (\tan^{-1} x)^2 \] This simplifies to: \[ \frac{\pi^2}{4} - \pi \tan^{-1} x + (\tan^{-1} x)^2 \] Now substituting this back into the equation: \[ (\tan^{-1} x)^2 + \frac{\pi^2}{4} - \pi \tan^{-1} x + (\tan^{-1} x)^2 = \frac{5\pi^2}{8} \] Combining like terms gives: \[ 2(\tan^{-1} x)^2 - \pi \tan^{-1} x + \frac{\pi^2}{4} = \frac{5\pi^2}{8} \] ### Step 3: Rearranging the equation Now, let's move \(\frac{5\pi^2}{8}\) to the left side: \[ 2(\tan^{-1} x)^2 - \pi \tan^{-1} x + \frac{\pi^2}{4} - \frac{5\pi^2}{8} = 0 \] Finding a common denominator (which is 8): \[ \frac{2\pi^2}{8} - \frac{5\pi^2}{8} = -\frac{3\pi^2}{8} \] Thus, we have: \[ 2(\tan^{-1} x)^2 - \pi \tan^{-1} x - \frac{3\pi^2}{8} = 0 \] ### Step 4: Solve the quadratic equation Let \(y = \tan^{-1} x\). The equation becomes: \[ 2y^2 - \pi y - \frac{3\pi^2}{8} = 0 \] Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): - \(a = 2\) - \(b = -\pi\) - \(c = -\frac{3\pi^2}{8}\) Calculating the discriminant: \[ b^2 - 4ac = \pi^2 - 4 \cdot 2 \cdot \left(-\frac{3\pi^2}{8}\right) = \pi^2 + 3\pi^2 = 4\pi^2 \] Now substituting back into the quadratic formula: \[ y = \frac{\pi \pm 2\pi}{4} \] This gives us two solutions: 1. \(y = \frac{3\pi}{4}\) 2. \(y = -\frac{\pi}{4}\) ### Step 5: Determine the valid solution Since \(y = \tan^{-1} x\) must lie between \(-\frac{\pi}{2}\) and \(\frac{\pi}{2}\), we discard \(y = \frac{3\pi}{4}\) because it is outside this range. Thus: \[ y = -\frac{\pi}{4} \] This implies: \[ \tan^{-1} x = -\frac{\pi}{4} \implies x = \tan\left(-\frac{\pi}{4}\right) = -1 \] ### Final Answer The value of \(x\) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    BITSAT GUIDE|Exercise BITSAT Archives|41 Videos
  • THREE DIMENSIONAL GEOMETRY

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |11 Videos
  • VECTOR ALGEBRA

    BITSAT GUIDE|Exercise BITSAT Archives|21 Videos

Similar Questions

Explore conceptually related problems

If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5 pi^(2))/(8), then find x

If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5 pi^(2))/(8) find x

If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5 pi^(2))/(8) then x equals:

If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5 pi^(2))/(8) then x equals

If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5 pi^(2))/(8) then one of the values of x is

Solve for x: (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5*pi^(2))/(8)

BITSAT GUIDE-TRIGONOMETRY-BITSAT Archives
  1. If (tan^(-1)x)^(2)+(cot^(-1)x)^(2)=(5 pi^(2))/(8), then the value of x...

    Text Solution

    |

  2. Number of roots of the equation |sinxcosx| +sqrt(2+t a n^2x+cot^2x)=sq...

    Text Solution

    |

  3. The greatest and least values of (sin^(-1)x)^(2) + (cos^(-1)x)^(2) are...

    Text Solution

    |

  4. Find the number of solutions of cos x =|1+ sin x |, 0 le x le 3 pi

    Text Solution

    |

  5. The vaue of the expression sin [cot^(-1){cos (tan^(-1))}] is

    Text Solution

    |

  6. An object is observed from the points A, B and C lying in a horizontal...

    Text Solution

    |

  7. If tan 20^(@) =lamda, then (tan 160^(@) -tan 110^(@))/(1+ (tan 160^(@)...

    Text Solution

    |

  8. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  9. If A+B+C=90^(@)," then "(cot A+ cot B+ cot C)/(cot A cot B cot C) is e...

    Text Solution

    |

  10. In Delta ABC, if a=2, b=3 and sin A =(2)/(3). Then, cos C is equal to

    Text Solution

    |

  11. If 4 sin^(-1) x + cos^(-1) x= pi, then x is equal to

    Text Solution

    |

  12. If tan theta =(1)/(2) and tan phi =(1)/(3), then the value of theta + ...

    Text Solution

    |

  13. If sin theta =(1)/(2) and tan theta =(1)/(sqrt(3)), AA n in l, then mo...

    Text Solution

    |

  14. The function sin x + cos x is maximum, when x is equal to

    Text Solution

    |

  15. Principal value of sin^(-1). (-(sqrt(3))/(2))is

    Text Solution

    |

  16. If angles A,B and C are in AP, then (a+c)/(b) is equal to

    Text Solution

    |

  17. (1+cos.(pi)/(8))(1+cos.(3pi)/(8))(1+cos.(5pi)/(8))(1+cos.(7pi)/(8)) is...

    Text Solution

    |

  18. The solution of the equation sectheta-cosectheta=(4)/(3) is

    Text Solution

    |

  19. What is the minimum value of 9 tan ^(2) theta + 4 cot ^(2) theta ?

    Text Solution

    |

  20. If a le sin^(-1) x+cos^(-1)x+tan^(-1) x le b, then

    Text Solution

    |

  21. If sin^(-1)x+sin^(-1) y=(2pi)/3 and cos^(-1)x-cos^(-1) y= pi/3 ," then...

    Text Solution

    |