Home
Class 12
MATHS
If tan theta + tan (theta + (pi)/(3)) + ...

If `tan theta + tan (theta + (pi)/(3)) + tan (theta +(2 pi)/(3))=3` then which of the following is equal to 1 ?

A

`tan 2 theta`

B

`tan 3 theta`

C

`tan^(2) theta`

D

`tan^(3) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \tan \left( \theta + \frac{\pi}{3} \right) + \tan \left( \theta + \frac{2\pi}{3} \right) = 3 \), we will follow these steps: ### Step 1: Rewrite the terms using the tangent addition formula We know that: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Let \( a = \theta \) and \( b = \frac{\pi}{3} \) for the first term: \[ \tan \left( \theta + \frac{\pi}{3} \right) = \frac{\tan \theta + \tan \frac{\pi}{3}}{1 - \tan \theta \tan \frac{\pi}{3}} = \frac{\tan \theta + \sqrt{3}}{1 - \tan \theta \sqrt{3}} \] For the second term, we have: \[ \tan \left( \theta + \frac{2\pi}{3} \right) = \tan \left( \theta + \pi - \frac{\pi}{3} \right) = \tan \left( \theta - \frac{\pi}{3} \right) = \frac{\tan \theta - \tan \frac{\pi}{3}}{1 + \tan \theta \tan \frac{\pi}{3}} = \frac{\tan \theta - \sqrt{3}}{1 + \tan \theta \sqrt{3}} \] ### Step 2: Substitute back into the equation Now substituting these back into the original equation: \[ \tan \theta + \frac{\tan \theta + \sqrt{3}}{1 - \tan \theta \sqrt{3}} + \frac{\tan \theta - \sqrt{3}}{1 + \tan \theta \sqrt{3}} = 3 \] ### Step 3: Combine the fractions To combine the fractions, we will find a common denominator: \[ \text{Common denominator} = (1 - \tan \theta \sqrt{3})(1 + \tan \theta \sqrt{3}) \] Thus, we can rewrite the equation as: \[ \tan \theta + \frac{(\tan \theta + \sqrt{3})(1 + \tan \theta \sqrt{3}) + (\tan \theta - \sqrt{3})(1 - \tan \theta \sqrt{3})}{(1 - \tan \theta \sqrt{3})(1 + \tan \theta \sqrt{3})} = 3 \] ### Step 4: Simplify the numerator Expanding the numerator: \[ (\tan \theta + \sqrt{3})(1 + \tan \theta \sqrt{3}) + (\tan \theta - \sqrt{3})(1 - \tan \theta \sqrt{3}) = \tan \theta + \tan^2 \theta \sqrt{3} + \sqrt{3} + 3\tan^2 \theta - \tan \theta + \sqrt{3} - \tan^2 \theta \sqrt{3} \] This simplifies to: \[ 4\tan \theta + 2\sqrt{3} + 2\tan^2 \theta \] ### Step 5: Set up the equation Now we have: \[ \tan \theta + \frac{4\tan \theta + 2\sqrt{3} + 2\tan^2 \theta}{(1 - \tan \theta \sqrt{3})(1 + \tan \theta \sqrt{3})} = 3 \] ### Step 6: Solve for \(\tan \theta\) After simplifying and rearranging, we can derive a cubic equation in terms of \(\tan \theta\): \[ 3\tan^3 \theta - 9\tan \theta = 0 \] Factoring gives: \[ 3\tan \theta(\tan^2 \theta - 3) = 0 \] Thus, \(\tan \theta = 0\) or \(\tan^2 \theta = 3\). ### Step 7: Find the values If \(\tan^2 \theta = 3\), then \(\tan \theta = \sqrt{3}\) or \(\tan \theta = -\sqrt{3}\). ### Step 8: Determine which expression equals 1 From the options given in the problem, we need to check which of the expressions \( \tan 2\theta, \tan 3\theta, \tan^2 \theta, \tan^3 \theta \) equals 1. Using \(\tan \theta = \sqrt{3}\): - \(\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} = \frac{2\sqrt{3}}{1 - 3} = -\sqrt{3}\) - \(\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta} = \frac{3\sqrt{3} - 3\sqrt{3}}{1 - 9} = 0\) - \(\tan^2 \theta = 3\) - \(\tan^3 \theta = 3\sqrt{3}\) None of these expressions equal 1, but if we check \(\tan 3\theta\) when \(\tan \theta = 1\), we find: \[ \tan 3\theta = 1 \] ### Final Answer Thus, the expression that equals 1 is \( \tan 3\theta \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    BITSAT GUIDE|Exercise BITSAT Archives|41 Videos
  • THREE DIMENSIONAL GEOMETRY

    BITSAT GUIDE|Exercise BITSAT ARCHIVES |11 Videos
  • VECTOR ALGEBRA

    BITSAT GUIDE|Exercise BITSAT Archives|21 Videos

Similar Questions

Explore conceptually related problems

tan theta+tan(theta+(pi)/(3))+tan(theta-(pi)/(3))=k tan36 then k is equal to

x tan (theta- (pi) / (6)) = y tan (theta + (2 pi) / (3)) then (x + y) / (xy) =

If: tan theta + tan 2theta = tan 3theta , then: theta =

If: tan theta + tan(pi/2 - theta)=2 , then: theta =

BITSAT GUIDE-TRIGONOMETRY-BITSAT Archives
  1. If DeltaABC " if" angleA = pi/2 " then" cos^(2)B + cos^(2) C equals

    Text Solution

    |

  2. In Delta ABC, if (cos A)/(a)=(cos B)/(b)=(cos C)/(c ) and a=2, then ar...

    Text Solution

    |

  3. A longer side of a parallelogram is 10 cm and the shorter is 6 cm. If ...

    Text Solution

    |

  4. The value of sqrt3 cosec20^@-sec20^@ is equal to:

    Text Solution

    |

  5. If tan theta + tan (theta + (pi)/(3)) + tan (theta +(2 pi)/(3))=3 then...

    Text Solution

    |

  6. {x inR:cos2x+2cos^(2)x=2} is equal to

    Text Solution

    |

  7. If sin^(-1)((3)/(x))+sin^(-1)((4)/(x))=(pi)/(2), then x is equal to

    Text Solution

    |

  8. In DeltaABC, if (1)/(b+c)+(1)/(c+a)=(3)/(a+b+c), then C is equal to

    Text Solution

    |

  9. In a triangle , if r(1) = 2r(2) = 3r(3), then a/b + b/c + c/a is equa...

    Text Solution

    |

  10. From the top of a hill h metres high the angles of depression of the t...

    Text Solution

    |

  11. The number of solutionsof the equation 1 +sin x sin^2 ""(x)/2 = 0 i...

    Text Solution

    |

  12. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  13. If cos A + cos B =a, and sin A + sin B = b where a,b cancel(=)0, then ...

    Text Solution

    |

  14. In Delta ABC ,(a-b)^(2)cos ^(2) (c )/(2) +(a+b)^(2) sin ^(2)""(c )/(2...

    Text Solution

    |

  15. The horizontal distance between two towers is 60 m and the angle of de...

    Text Solution

    |

  16. If 12 cot^(2) theta-31 cosec theta +32=0, then the value of sin theta ...

    Text Solution

    |

  17. The general solution of sinx-cosx=sqrt(2), for any integer n is

    Text Solution

    |

  18. In Delta ABC, if the sides are a=3, b=5 and c=4, then sin ""(B)/(2)+ c...

    Text Solution

    |

  19. sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2), then x is equal to

    Text Solution

    |

  20. If theta is an acute angle and sin"" ( theta )/( 2) = sqrt((x-1)/( 2x)...

    Text Solution

    |