Home
Class 12
MATHS
Evaluate lim(xrarr 0) (sin(3x+a)-3 s...

Evaluate
`lim_(xrarr 0) (sin(3x+a)-3 sin(2x+a)+3sin(x+a)-sina)/(x^(3))`

A

0

B

cos a

C

`- cos a `

D

sin a

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sin(3x + a) - 3\sin(2x + a) + 3\sin(x + a) - \sin a}{x^3}, \] we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the limit expression: \[ \sin(3(0) + a) - 3\sin(2(0) + a) + 3\sin(0 + a) - \sin a = \sin a - 3\sin a + 3\sin a - \sin a = 0. \] So, we have: \[ \frac{0}{0} \] This indicates that we have an indeterminate form, and we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have \( \frac{0}{0} \), we differentiate the numerator and the denominator. **Numerator:** \[ \frac{d}{dx} \left( \sin(3x + a) - 3\sin(2x + a) + 3\sin(x + a) - \sin a \right) = 3\cos(3x + a) - 6\cos(2x + a) + 3\cos(x + a). \] **Denominator:** \[ \frac{d}{dx}(x^3) = 3x^2. \] Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{3\cos(3x + a) - 6\cos(2x + a) + 3\cos(x + a)}{3x^2}. \] ### Step 3: Substitute \( x = 0 \) Again Substituting \( x = 0 \) again gives: \[ 3\cos(3(0) + a) - 6\cos(2(0) + a) + 3\cos(0 + a) = 3\cos a - 6\cos a + 3\cos a = 0. \] We again have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 4: Apply L'Hôpital's Rule Again Differentiate the numerator and denominator again. **Numerator:** \[ \frac{d}{dx} \left( 3\cos(3x + a) - 6\cos(2x + a) + 3\cos(x + a) \right) = -9\sin(3x + a) + 12\sin(2x + a) - 3\sin(x + a). \] **Denominator:** \[ \frac{d}{dx}(3x^2) = 6x. \] Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{-9\sin(3x + a) + 12\sin(2x + a) - 3\sin(x + a)}{6x}. \] ### Step 5: Substitute \( x = 0 \) Again Substituting \( x = 0 \) gives: \[ -9\sin(3(0) + a) + 12\sin(2(0) + a) - 3\sin(0 + a) = -9\sin a + 12\sin a - 3\sin a = 0. \] We again have \( \frac{0}{0} \), so we apply L'Hôpital's Rule one more time. ### Step 6: Apply L'Hôpital's Rule One More Time Differentiate the numerator and denominator again. **Numerator:** \[ \frac{d}{dx} \left( -9\sin(3x + a) + 12\sin(2x + a) - 3\sin(x + a) \right) = -27\cos(3x + a) + 24\cos(2x + a) - 3\cos(x + a). \] **Denominator:** \[ \frac{d}{dx}(6x) = 6. \] Now, we rewrite the limit: \[ \lim_{x \to 0} \frac{-27\cos(3x + a) + 24\cos(2x + a) - 3\cos(x + a)}{6}. \] ### Step 7: Substitute \( x = 0 \) One Last Time Substituting \( x = 0 \) gives: \[ -27\cos(0 + a) + 24\cos(0 + a) - 3\cos(0 + a) = (-27 + 24 - 3)\cos a = -6\cos a. \] Thus, the limit becomes: \[ \frac{-6\cos a}{6} = -\cos a. \] ### Final Answer The final result is: \[ \lim_{x \to 0} \frac{\sin(3x + a) - 3\sin(2x + a) + 3\sin(x + a) - \sin a}{x^3} = -\cos a. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS CONTINUITY AND DIFFERENTIABILITY

    BITSAT GUIDE|Exercise BITSAT Archives |28 Videos
  • INDEFINITE INTEGRAL

    BITSAT GUIDE|Exercise BITSAT Archives |14 Videos
  • LINEAR PROGRAMMING

    BITSAT GUIDE|Exercise BITSAT ARCHIVES|3 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sin 3x)/x

Evaluate lim_(x rarr 0)(sin(3x))/(x)

Evaluate lim_(x rarr0)(sin(3+x)-sin(3-x))/(x)

lim_ (x rarr pi) (sin3x) / (sin2x)

lim_(x rarr0)(sin(3x)-3x)/(x sin^(2)5x)=

lim_(xrarr0) (sin 3 x)/(2x)

lim_(x rarr0)(sin3x cos2x)/(sin2x)

lim_(xrarr0)""(sin|x|)/(x)

Evaluate lim_(x rarr0)(2sin x-sin(2x))/(x^(3))

Evaluate lim_(x rarr0)(tan3x-2x)/(3x-sin^(2)x)

BITSAT GUIDE-LIMITS CONTINUITY AND DIFFERENTIABILITY -BITSAT Archives
  1. Evaluate lim(xrarr 0) (sin(3x+a)-3 sin(2x+a)+3sin(x+a)-sina)/(x^(3...

    Text Solution

    |

  2. lim(x rarr 0) (1+x)^(8)-1 is equal

    Text Solution

    |

  3. lim(x rarr tan^(-1) 3) (tan^(2) x -2 tan x -3)/(tan^(2)x-4 tan x +3) ...

    Text Solution

    |

  4. lim ( xrarr -oo) (x^(4).sin((1)/(x))+x^(2))/(1+|x|^(3)) is equal to

    Text Solution

    |

  5. lim(x rarr 1) (x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  6. If f(x) = = {{:([tan ((pi)/(4)+x)]^(1//x),x ne0),(k ,x=0):} For what...

    Text Solution

    |

  7. The value of lim(x rarr 0) ((1+5x^(2))/(1+3x^(2)))^(1/x^2) is

    Text Solution

    |

  8. lim(x rarr 0) ((2+x) sin (2+x) - 2 sin2)/(x) is equal to

    Text Solution

    |

  9. If f(x)=((3x+tan^(2) x)/x) is continuous at x=0, then f(0) is equal to...

    Text Solution

    |

  10. If f(x) = (log (1+ax)-log (1-bx))/(x) for x ne 0 and f(0) = k and f(x...

    Text Solution

    |

  11. lim(x rarr0) (sin x)/(x)

    Text Solution

    |

  12. lim(x->0)(cos(sinx)-1)/(x^2)

    Text Solution

    |

  13. In order that the function f(x) = (x+1)^(1/x) is continuous at x = 0, ...

    Text Solution

    |

  14. The function f (x ) = |x | at x = 0 is

    Text Solution

    |

  15. lim(x rarr 0) (cosec x )^(1//"log"x) is equal to

    Text Solution

    |

  16. The value of lim(xtooo)((x+6)/(x+1))^(x+4), is

    Text Solution

    |

  17. The set of points where the function f(x) = x |x| is differentiable i...

    Text Solution

    |

  18. lim(x->2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is equal to

    Text Solution

    |

  19. lim(x rarr 1) (1-x) tan((pi x)/2)

    Text Solution

    |

  20. If f: R rarr R is defined by f(x) = [ x -3] + | x-4| for x in R then...

    Text Solution

    |

  21. If f : R rarr R is defined by f(x) = {{:((cos 3x-cosx )/(x^(2)), "f...

    Text Solution

    |